Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 105, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030477

RESUMO

BACKGROUND: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions. METHODS: Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells. RESULTS: The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load. CONCLUSIONS: We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.


Assuntos
COVID-19 , Cálcio , Corantes Fluorescentes , SARS-CoV-2 , Chlorocebus aethiops , Células Vero , Cálcio/metabolismo , Cálcio/análise , Animais , COVID-19/virologia , COVID-19/metabolismo , Corantes Fluorescentes/química , Humanos , Fótons
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791560

RESUMO

A new, eco-friendly process utilising the green solvent propylene carbonate (PC) has been developed to perform N-alkylation of N-, O- and/or S-containing heterocyclic compounds. PC in these reactions served as both the reagent and solvent. Importantly, no genotoxic alkyl halides were required. No auxiliary was necessary when using anhydrous PC. Product formation includes nucleophilic substitution with the concomitant loss of water and carbon dioxide. Substrates prepared, including the newly invented PROTAC drugs, are widely used.


Assuntos
Compostos Heterocíclicos , Propano , Alquilação , Compostos Heterocíclicos/química , Propano/química , Propano/análogos & derivados , Solventes/química , Química Verde/métodos
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542479

RESUMO

The few commercially available chemosensors and published probes for in vitro Zn2+ detection in two-photon microscopy are compromised by their flawed spectroscopic properties, causing issues in selectivity or challenging multistep syntheses. Herein, we present the development of an effective small molecular GFP chromophore-based fluorescent chemosensor with a 2,2'-bipyridine chelator moiety (GFZnP BIPY) for Zn2+ detection that has straightforward synthesis and uncompromised properties. Detailed experimental characterizations of the free and the zinc-bound compounds within the physiologically relevant pH range are presented. Excellent photophysical characteristics are reported, including a 53-fold fluorescence enhancement with excitation and emission maxima at 422 nm and 492 nm, respectively. A high two-photon cross section of 3.0 GM at 840 nm as well as excellent metal ion selectivity are reported. In vitro experiments on HEK 293 cell culture were carried out using two-photon microscopy to demonstrate the applicability of the novel sensor for zinc bioimaging.


Assuntos
2,2'-Dipiridil , Compostos Heterocíclicos , Humanos , Células HEK293 , Microscopia de Fluorescência , Quelantes , Zinco , Corantes Fluorescentes/química , Espectrometria de Fluorescência
4.
Chemistry ; 30(31): e202400009, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446718

RESUMO

An effective, GFP-inspired fluorescent Zn2+ sensor is developed for two-photon microscopy and related biological application that features an 8-methoxyquinoline moiety. Excellent photophysical characteristics including a 37-fold fluorescence enhancement with excitation and emission maxima at 440 nm and 505 nm, respectively, as well as a high two-photon cross-section of 73 GM at 880 nm are reported. Based on the experimental data, the relationship between the structure and properties was elucidated and explained backed up by DFT calculations, particularly the observed PeT phenomenon for the turn-on process. Biological validation and detailed experimental and theoretical characterization of the free and the zinc-bound compounds are presented.


Assuntos
Corantes Fluorescentes , Proteínas de Fluorescência Verde , Quinolinas , Zinco , Zinco/química , Corantes Fluorescentes/química , Quinolinas/química , Proteínas de Fluorescência Verde/química , Humanos , Teoria da Densidade Funcional , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons
5.
Molecules ; 23(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400217

RESUMO

Not all amide bonds are created equally. The purpose of the present paper is the reinterpretation of the amide group by means of two concepts: amidicity and carbonylicity. These concepts are meant to provide a new viewpoint in defining the stability and reactivity of amides. With the help of simple quantum-chemical calculations, practicing chemists can easily predict the outcome of a desired process. The main benefit of the concepts is their simplicity. They provide intuitive, but quasi-thermodynamic data, making them a practical rule of thumb for routine use. In the current paper we demonstrate the performance of our methods to describe the chemical character of an amide bond strength and the way of its activation methods. Examples include transamidation, acyl transfer and amide reductions. Also, the method is highly capable for simple interpretation of mechanisms for biological processes, such as protein splicing and drug mechanisms. Finally, we demonstrate how these methods can provide information about photo-activation of amides, through the examples of two caged neurotransmitter derivatives.


Assuntos
Amidas/química , Modelos Químicos , Algoritmos , Amidas/síntese química , Técnicas de Química Sintética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...