Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 58(7): 1663-75, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17389586

RESUMO

The present study supports the view that the retinoblastoma functions are shared by two distinct retinoblastoma-related (RBR) protein subfamilies in the monocot cereal species, whereas dicot plants have only a single RBR protein. Genes encoding RBR proteins were identified and characterized in alfalfa (Medicago sativa), rice (Oryza sativa), and wheat (Triticum aestivum). The alfalfa MsRBR gene encodes a new member of the dicot RBR proteins (subfamily A). A comparison was made of two rice genes, OsRBR1 (subfamily B) and OsRBR2 (subfamily C), which exhibit differences in exon-intron organization and share only 52% amino acid sequence identity. The plant RBR proteins can be categorized into three distinct subfamilies, in which the similarity between members is greater than the similarity to other RBR proteins from the same species. Comparison of the transcript levels in various tissues revealed that the expression of the OsRBR1 gene was high in embryos or cultured cells and gradually decreased from the basal region to the tip of the leaves. The OsRBR2 gene displayed more transcripts in differentiated tissues, such as leaves and roots. In contrast, the mRNA level of the MsRBR gene did not differ significantly in either mature leaves or cultured cells. The results of yeast two-hybrid pairwise interaction assays demonstrated differences between the rice RBR variants in the interactions with the phosphatase 2A B'' regulatory subunit and an unknown protein. The in silico and functional data presented in this work highlight considerable differences between dicot and monocot species in the retinoblastoma regulatory pathways and permit an improved classification of RBR proteins in higher plants.


Assuntos
Família Multigênica , Proteínas de Plantas/metabolismo , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional , Genoma de Planta , Medicago sativa/genética , Medicago sativa/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Alinhamento de Sequência , Triticum/genética , Triticum/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Plant J ; 46(1): 111-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16553899

RESUMO

Kip-related proteins (KRPs) play a central role in the regulation of the cell cycle and differentiation through modulation of cyclin-dependent kinase (CDK) functions. We have identified a CDK inhibitor gene from Medicago truncatula (Mt) by a yeast two-hybrid screen. The KRPMt gene was expressed in all plant organs and cultured cells, and its transcripts accumulated after abscisic acid and NaCl treatment. The KRPMt protein exhibits seven conserved sequence domains and a PEST motif that is also detected in various Arabidopsis KRPs. In the yeast two-hybrid test, the KRPMt protein interacted with CDK (Medsa;CDKA;1) and D-type cyclins. However, in the pull-down assays, B-type CDK complexes were also detectable. Recombinant KRPMt differentially inhibited various alfalfa CDK complexes in phosphorylation assays. The immunoprecipitated Medsa;CDKA;1/A;2 complex was strongly inhibited, whereas the mitotic Medsa;CDKB2;1 complex was the most sensitive to inhibition. Function of Medsa;CDKB1;1 complex was not inhibited by the KRPMt protein. The mitotic Medsa;CYCB2 and Medsa;CYCA2;1 complexes responded weakly to this inhibitor protein. Kinase complexes from G2/M cells showed increased sensitivity towards the inhibitor compared with those isolated from G1/S-phase cells. In vitro phosphorylation of Medicago retinoblastoma-related protein was also reduced in the presence of KRPMt. Phosphorylation of this inhibitor protein by the recombinant calmodulin-like domain protein kinase (MsCPK3) resulted in enhanced inhibition of CDK function. The data presented emphasize the selective sensitivity of various cyclin-dependent kinase complexes to this inhibitor protein, and suggest a role for CDK inhibitors and CPKs in cross-talk between Ca2+ signalling and regulation of cell-cycle progression in plants.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Medicago sativa/enzimologia , Medicago truncatula/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Ácido Abscísico/farmacologia , Motivos de Aminoácidos , Cálcio/metabolismo , Calmodulina/química , Ciclo Celular/fisiologia , Clonagem Molecular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Ciclinas/metabolismo , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago sativa/genética , Medicago truncatula/genética , Dados de Sequência Molecular , Fosforilação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...