Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 40(10): 2143-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26438150

RESUMO

Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase nine inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5-10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices.


Assuntos
Inibidores da Colinesterase/farmacologia , Hipocampo/efeitos dos fármacos , Isoflurofato/farmacologia , Fármacos Neuroprotetores/farmacologia , Sinapses/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Atropina/farmacologia , Hipocampo/metabolismo , Masculino , Neuroproteção/fisiologia , Compostos de Pralidoxima/farmacologia , Ratos Sprague-Dawley , Sinapses/metabolismo
2.
Neurotoxicology ; 44: 80-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928201

RESUMO

Many organophosphorous esters synthesized for applications in industry, agriculture, or warfare irreversibly inhibit acetylcholinesterase, and acute poisoning with these compounds causes life-threatening cholinergic overstimulation. Following classical emergency treatment with atropine, an oxime, and a benzodiazepine, surviving victims often suffer brain neurodegeneration. Currently, there is no pharmacological treatment to prevent this brain injury. Here we show that a cyclic diterpenoid, (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R) ameliorates the damage caused by diisopropylfluorophosphate (DFP) in the hippocampal area CA1. DFP has been frequently used as a surrogate for the warfare nerve agent sarin. In rats, DFP is lethal at the dose used to cause brain damage. Therefore, to observe brain damage in survivors, the death rate was reduced by pre-administration of the peripherally acting antidotes pyridostigmine and methyl atropine or its analog ipratropium. Pyridostigmine bromide, methyl atropine nitrate, and ipratropium bromide were dissolved in saline and injected intramuscularly at 0.1mg/kg, 20mg/kg, and 23mg/kg, respectively. DFP (9mg/kg) dissolved in cold water was injected intraperitoneally. 4R (6mg/kg) dissolved in DMSO was injected subcutaneously, either 1h before or 5 or 24h after DFP. Neurodegeneration was assessed with Fluoro-Jade B and amino cupric silver staining; neuroinflammation was measured by the expression of nestin, a marker of activated astrocytes. Forty-eight hours after DFP administration, 4R decreased the number of dead neurons by half when injected before or after DFP. 4R also significantly decreased the number of activated astrocytes. These data suggest that 4R is a promising new drug that could change the therapeutic paradigm for acute poisoning with organophosphorous compounds by the implementation of a second-stage intervention after the classical countermeasure treatment.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/prevenção & controle , Inibidores da Colinesterase/intoxicação , Diterpenos/uso terapêutico , Isoflurofato/intoxicação , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular , Diterpenos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
3.
Toxicol In Vitro ; 25(7): 1468-74, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21569834

RESUMO

Many neurotoxic organophosphates (OPs) inhibit acetylcholinesterase (AChE) and as a result can cause a life threatening cholinergic crisis. Current medical countermeasures, which typically include atropine and oximes target the cholinergic crisis and are effective in decreasing mortality but do not sufficiently protect against delayed neurological deficits. There is, therefore, a need to develop neuroprotective drugs to prevent long-term neurological deficits. We used acute hippocampal slices to test the hypothesis that 4R,6R-cembratrienediol (4R) protects against functional damage caused by the OP paraoxon (POX). To assess hippocampal function, we measured synaptically evoked population spikes (PSs). Application of 4R reversed POX inhibition of PSs and the EC(50) of this effect was 0.8 µM. Atropine alone did not protect against POX neurotoxicity, but it did enhance protection by 4R. Pralidoxime partially regenerated AChE activity and protected against POX inhibition of PSs. 4R did not regenerate AChE suggesting that under our experimental conditions, the deleterious effect of POX on hippocampal function is not directly related to AChE inhibition. In conclusion, 4R is a promising neuroprotective compound against OP neurotoxins.


Assuntos
Inibidores da Colinesterase/toxicidade , Diterpenos/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Paraoxon/toxicidade , Acetilcolinesterase/metabolismo , Animais , Atropina/farmacologia , Reativadores da Colinesterase/farmacologia , Diterpenos/química , Relação Dose-Resposta a Droga , Hipocampo/citologia , Masculino , Fármacos Neuroprotetores/química , Parassimpatolíticos/farmacologia , Compostos de Pralidoxima/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...