Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544030

RESUMO

The comfort and safety of a cyclist are directly influenced by the vibrational behavior of the handlebar. Hence, the objective of this article is to comparatively assess the vibrational characteristics of two bicycle handlebars: one made of steel and the other made of braided composite material. The transmissibility function represents the relationship between the excitation applied to both handlebars through their stems and the corresponding response in the handle area, which was experimentally obtained by applying a random vibrating signal (constant amplitude of 0.01 g2/Hz) using a shaker. This signal was applied in a frequency range between 100 Hz and 1200 Hz, and the response was measured at one of the two cantilevered ends of the handlebar. Different sensors, including a laser vibrometer and a control accelerometer in the shaker, were utilized. The transmissibility, natural frequencies and damping functions were obtained. Subsequently, another experimental analysis was carried out with the instrumented handlebars mounted on a bicycle, placing three accelerometers and a GPS meter and traveling through a real test circuit, with a rough surface, speed bumps and areas with shaped warning bands. Power Spectral Density (PSD) curves were obtained for the steel and carbon-fiber-composite handlebars in order to quantify the signal intensity. Finally, a fatigue analysis was carried out in order to evaluate the expected life of both handlebars under the experimentally applied load, which is considered the reference cycle. This study offers a comparative analysis of the vibration behavior exhibited by steel and carbon-fiber-composite bicycle handlebars under experimentally applied load. In conclusion, data on natural frequencies, damping functions and fatigue life expectancy for both handlebar materials were obtained. Our study provides valuable insights into the vibrational behavior and performance characteristics of steel and carbon-fiber-composite bicycle handlebars, contributing to the understanding of their comfort and safety implications for cyclists.

2.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363061

RESUMO

The main purpose of the article is to present the possibilities of producing composite reinforcement with the use of a computer embroidery machine. The study below presents the results of strength tests of composites containing technical embroidery, woven fabric, and UD fabric as the reinforcement. Each of the samples was made of the same material-flax roving. The samples differed from each other in the arrangement of layers in the reinforcement. The composites were made using the infusion method with epoxy resin. The embroidery was made on a ZSK embroidery machine, type JCZA 0109-550. A total of 12 types of composites were produced and tested. The test material was subjected to strength tests-tensile strength, tensile elongation, and shear strength, on the INSTRON machine. As the research showed, the use of technical embroidery as a composite reinforcement increases its tensile strength. Furthermore, the use of embroidery is a vertical reinforcement of the composite and prevents the formation of interlayer cracks. The technology of technical embroidery allows for optimizing the mechanical values of the composite reinforcement.

3.
Theor Appl Genet ; 130(5): 903-913, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28280866

RESUMO

KEY MESSAGE: Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.


Assuntos
Embaralhamento de DNA , Frutas/química , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Epistasia Genética , Ligação Genética , Minerais/análise , Valor Nutritivo , Melhoramento Vegetal , Solanum/genética , Oligoelementos/análise
4.
Theor Appl Genet ; 130(1): 213-222, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27742924

RESUMO

KEY MESSAGE: QTL and codominant genetic markers for fruit cracking have been identified in a tomato genetic map derived from a RIL population, providing molecular tools for marker-assisted breeding of this trait. In tomato, as well as in other fleshy fruits, one of the main disorders that widely limit quality and production is fruit cracking or splitting of the epidermis that is observed on the fruit skin and flesh at any stage of fruit growth and maturation. To elucidate the genetic basis of fruit cracking, a quantitative trait loci (QTL) analysis was conducted in a recombinant inbred line (RIL) population derived from a cross between tomato (Solanum lycopersicum) and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit cracking during three consecutive growing seasons. Construction of a high-density linkage map based on codominant markers, covering more than 1000 cM of the whole genome, led to the identification of both main and epistatic QTL controlling fruit cracking on the basis of a single-environment as well as multiple-environment analysis. This information will enhance molecular breeding for novel cracking resistant varieties and simultaneously assist the identification of genes underlying these QTL, helping to reveal the genetic basis of fruit cracking in tomato.


Assuntos
Meio Ambiente , Epistasia Genética , Frutas/fisiologia , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Ligação Genética , Genótipo , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Solanum/genética , Solanum/fisiologia
5.
Theor Appl Genet ; 126(1): 83-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22903693

RESUMO

A novel source of resistance to two-spotted spider mite (Tetranychus urticae Koch) was found in Solanum pimpinellifolium L. accession TO-937 and thereby a potential source of desirable traits that could be introduced into new tomato varieties. This resistance was found to be controlled by a major locus modulated by minor loci of unknown location in the genome of this wild tomato. We first applied a bulked segregant analysis (BSA) approach in an F(4) population as a method for rapidly identifying a genomic region of 17 cM on chromosome 2, flanked by two simple sequence repeat markers, harboring Rtu2.1, one of the major QTL involved in the spider mite resistance. A population of 169 recombinant inbred lines was also evaluated for spider mite infestation and a highly saturated genetic map was developed from this population. QTL mapping corroborated that chromosome 2 harbored the Rtu2.1 QTL in the same region that our previous BSA findings pointed out, but an even more robust QTL was found in the telomeric region of this chromosome. This QTL, we termed Rtu2.2, had a LOD score of 15.43 and accounted for more than 30% of the variance of two-spotted spider mite resistance. Several candidate genes involved in trichome formation, synthesis of trichomes exudates and plant defense signaling have been sequenced. However, either the lack of polymorphisms between the parental lines or their map position, away from the QTL, led to their rejection as candidate genes responsible for the two-spotted spider mite resistance. The Rtu2 QTL not only serve as a valuable target for marker-assisted selection of new spider mite-resistant tomato varieties, but also as a starting point for a better understanding of the molecular genetic functions underlying the resistance to this pest.


Assuntos
Mapeamento Cromossômico/métodos , Doenças das Plantas/genética , Solanum lycopersicum/genética , Alelos , Animais , Cruzamentos Genéticos , Feminino , Genes de Plantas , Marcadores Genéticos , Infestações por Ácaros/genética , Modelos Genéticos , Controle Biológico de Vetores/métodos , Locos de Características Quantitativas , Análise de Sequência de DNA , Tetranychidae/genética , Tetranychidae/fisiologia
6.
Physiol Plant ; 146(4): 473-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22582930

RESUMO

Fruit cuticle composition and their mechanical performance have a special role during ripening because internal pressure is no longer sustained by the degraded cell walls of the pericarp but is directly transmitted to epidermis and cuticle which could eventually crack. We have studied fruit growth, cuticle modifications and its biomechanics, and fruit cracking in tomato; tomato has been considered a model system for studying fleshy fruit growth and ripening. Tomato fruit cracking is a major disorder that causes severe economic losses and, in cherry tomato, crack appearance is limited to the ripening process. As environmental conditions play a crucial role in fruit growing, ripening and cracking, we grow two cherry tomato cultivars in four conditions of radiation and relative humidity (RH). High RH and low radiation decreased the amount of cuticle and cuticle components accumulated. No effect of RH in cuticle biomechanics was detected. However, cracked fruits had a significantly less deformable (lower maximum strain) cuticle than non-cracked fruits. A significant and continuous fruit growth from mature green to overripe has been detected with special displacement sensors. This growth rate varied among genotypes, with cracking-sensitive genotypes showing higher growth rates than cracking-resistant ones. Environmental conditions modified this growth rate during ripening, with higher growing rates under high RH and radiation. These conditions corresponded to those that favored fruit cracking. Fruit growth rate during ripening, probably sustained by an internal turgor pressure, is a key parameter in fruit cracking, because fruits that ripened detached from the vine did not crack.


Assuntos
Frutas/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Solanum lycopersicum/fisiologia , Fenômenos Biomecânicos , Parede Celular/fisiologia , Frutas/fisiologia , Genótipo , Umidade , Solanum lycopersicum/crescimento & desenvolvimento , Análise de Regressão , Estações do Ano , Especificidade da Espécie , Luz Solar , Temperatura
7.
Plant Sci ; 181(2): 77-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683870

RESUMO

Plant biomechanics combines the principles of physics, chemistry and engineering to answer questions about plant growth, development and interaction with the environment. The epidermal-growth-control theory, postulated in 1867 and verified in 2007, states that epidermal cells determine the rate of organ elongation since they are under tension, while inner tissues are under compression. The lipid cuticle layer is deposited on the surface of outer epidermal cell walls and modifies the chemical and mechanical nature of these cell walls. Thus, the plant cuticle plays a key role in plant interaction with the environment and in controlling organ expansion. Rheological analyses indicate that the cuticle is a mostly viscoelastic and strain-hardening material that stiffens the comparatively more elastic epidermal cell walls. Cuticle stiffness can be attributed to polysaccharides and flavonoids present in the cuticle whereas a cutin matrix is mainly responsible for its extensibility. Environmental conditions such as temperature and relative humidity have a plasticizing effect on the mechanical properties of cuticle since they lower cuticle stiffness and strength. The external appearance of agricultural commodities, especially fruits, is of great economic value. Mechanical properties of the cuticle can have a positive or negative effect on disorders like fruit cracking, fungal pathogen penetration and pest infestation. Cuticle rheology has significant variability within a species and thus can be subjected to selection in order to breed cultivars resistant to pests, infestation and disorders.


Assuntos
Fenômenos Biofísicos/fisiologia , Frutas/fisiologia , Lipídeos de Membrana/fisiologia , Epiderme Vegetal/fisiologia , Solanum lycopersicum/fisiologia , Fenômenos Biomecânicos/fisiologia , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Polissacarídeos/fisiologia , Temperatura , Água/metabolismo , Ceras/metabolismo
8.
Plant Cell Environ ; 32(7): 928-38, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19302168

RESUMO

Tomato crop productivity under salinity can be improved by grafting cultivars onto salt-tolerant wild relatives, thus mediating the supply of root-derived ionic and hormonal factors that regulate leaf area and senescence. A tomato cultivar was grafted onto rootstocks from a population of recombinant inbred lines (RILs) derived from a Solanum lycopersicum x Solanum cheesmaniae cross and cultivated under moderate salinity (75 mM NaCl). Concentrations of Na(+), K(+) and several phytohormones [abscisic acid (ABA); the cytokinins (CKs) zeatin, Z; zeatin riboside, ZR; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were analysed in leaf xylem sap in graft combinations of contrasting vigour. Scion leaf area correlated with photosystem II (PSII) efficiency (F(v)/F(m)) and determined fruit productivity. Xylem K(+) (but not Na(+)), K(+)/Na(+), the active CK Z, the ratio with its storage form Z/ZR and especially the ratio between CKs and ACC (Z/ACC and Z + ZR/ACC) were positively loaded into the first principal component (PC) determining both leaf growth and PSII efficiency. In contrast, the ratio ACC/ABA was negatively correlated with leaf biomass. Although the underlying physiological mechanisms by which rootstocks mediate leaf area or chlorophyll fluorescence (and thus influence tomato salt tolerance) seem complex, a putative potassium-CK interaction involved in regulating both processes merits further attention.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Xilema/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Citocininas/metabolismo , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Análise de Componente Principal , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo
9.
Funct Plant Biol ; 36(7): 613-620, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688674

RESUMO

Flavonoids accumulate in tomato (Solanum lycopersicum L.) fruit cuticles during ripening. Their quantitative contribution to the biomechanical properties of the cuticle is studied in six tomato genotypes which show presence or absence of these compounds at the red ripe stage of fruit development. Tomato cuticles with flavonoids at red ripe showed a dramatic increase of these compounds between mature green and red ripe stages together with a significant increase in the elastic modulus. On the other hand, cuticles without flavonoids displayed a similar biomechanical behaviour at mature green and red ripe stages. The absence of flavonoids could also be related with a predominance of the viscoelastic performance of the cuticle. Thus, the increase of phenolics in tomato fruit cuticles during ripening is correlated with a more rigid cutin network that reinforces the mechanical function of polysaccharides which tend to diminish at this stage due to cell wall disassembly. A role of phenolics as biomechanical modulators of the cuticle behaviour is proposed.

10.
Funct Plant Biol ; 35(5): 403-411, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688797

RESUMO

The cuticle of a plant plays an important role in many physiological events of fruit development and ripening. Despite this, little is known about cuticle formation and development. We include a detailed morphological study at the microscopic level of cuticle during fruit growth and ripening using tomato as a fruit model. In addition, a study of the differences in cuticle thickness and composition during development is included. The four genotypes studied in this work showed a similar timing of the main morphological events: initiation of epidermal differentiation, changes in the distribution of the lipid, pectin and cellulose material within the cuticle, appearance of pegs, beginning of cuticle invaginations, maximum thickness and loss of polysaccharidic material. Fruit growth, measured by fruit diameter, showed a positive correlation with the increase of cuticle thickness and the amount of cuticle and their cutin and polysaccharide components per fruit unit during development. By contrast, cuticle waxes showed a different behaviour. Two important characteristics of cuticle growth were observed during tomato fruit development. First, the amount of cuticle per surface area reached its maximum in the first 15 days after anthesis and remained more or less constant until ripening. Second, there was a significant loss of polysaccharidic material from the beginning of ripening (breaker stage) to full red ripe.

11.
J Exp Bot ; 58(14): 3875-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17975209

RESUMO

The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.


Assuntos
Frutas/fisiologia , Lipídeos de Membrana/fisiologia , Polissacarídeos/fisiologia , Solanum lycopersicum/fisiologia , Fenômenos Biomecânicos
12.
J Exp Bot ; 57(12): 3327-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16914505

RESUMO

The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhanced growth inhibition in the presence of exogenous ABA. The tos1 tomato mutant is also hypersensitive to osmotic stress, but in contrast to tss2, shows decreased sensitivity to ABA. Surprisingly, blocking ethylene signalling suppresses the growth defect of tss2 seedlings on ABA, NaCl, and osmotic stress, but not the osmotic hypersensitivity of tos1. The ethylene production of tss2 seedlings is increased compared with that of control seedlings under osmotic stress. In addition, the tss2 plants are hypersensitive to root growth inhibition by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This suggests that, in addition to ABA regulation, TSS2 acts as a negative regulator of endogenous ethylene accumulation. As previously shown in Arabidopsis, it is shown here that extensive cross-talk occurs between the ABA and ethylene signalling pathways in tomato and that the TSS2 and TOS1 loci appear as regulators of this cross-talk.


Assuntos
Ácido Abscísico/farmacologia , Etilenos/farmacologia , Genes de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Cloreto de Sódio/farmacologia , Solanum lycopersicum/genética , Aminoácidos Cíclicos/farmacologia , Etilenos/antagonistas & inibidores , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Osmose , Transdução de Sinais
13.
J Plant Physiol ; 163(8): 847-55, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16777532

RESUMO

In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects.


Assuntos
Silício/farmacologia , Cloreto de Sódio/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Água/metabolismo , Dióxido de Carbono/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Osmose/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos
14.
Funct Plant Biol ; 33(3): 279-288, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32689235

RESUMO

Soluble sugar content has been studied in relation to sucrose metabolism in the hexose-accumulating cultivated tomato Lycopersicon esculentum Mill, the wild relative species Lycopersicon cheesmanii Riley, in the sucrose-accumulating wild relative species Lycopersicon chmielewskii Rick, Kesicky, Fobes & Holle. and in two hexose-accumulating interspecific F1 hybrids (L. esculentum × L. cheesmanii; L. esculentum × L. chmielewskii), cultivated under two irrigation regimes (control: EC = 2.1 and saline: EC = 8.4 dS m-1). Under control conditions the total soluble sugar content (as hexose equivalents) in the ripe fruits of L. cheesmanii was 3-fold higher than in L. esculentum, while L. chmielewskii and both F1 hybrids contained twice as much as the cultivar. With the exception of L. esculentum × L. cheesmanii, salinity increased the sugar content by 1.3 (wild species) and 1.7 times (cultivar and L. esculentum × L. chmielewskii) with respect to control fruits. Wild germplasm or salinity provided two different mechanisms for the increases in fruit sugar content. The hexoses accumulated in ripe fruits were strongly influenced by those accumulated at the start of ripening, but the hydrolysed starch before start of ripening only partially explained the final hexose levels and especially the increase under salinity. The early cell wall acid invertase and the late neutral invertase activities appeared to be related to the amount of hexoses accumulated in ripe fruits. However, no metabolic parameter was positively related to the amount of sugar accumulated (including sucrose). The major differences between genotypes appeared in ripe fruits, in which up to 50% of the total amount of sugars accumulated in the wild species (mainly in L. cheesmanii) and hybrids cannot be explained by the sugars accumulated and the starch hydrolysed before the start of ripening stage. As a consequence, the higher fruit quality of the wild species compared with L. esculentum may depend more on the continuation of sucrose import during ripening than on osmotic or metabolic particularities such as the hexose / sucrose-accumulator character or specific enzyme activities.

15.
Am J Bot ; 92(3): 462-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21652423

RESUMO

The mechanical properties of enzymatically isolated cuticular membrane (CM) from ripe tomato fruits were investigated at 10 to 45°C and relative humidity (RH) of 40 to wet. CM samples were stressed by uniaxial tension loads to determine their tensile modulus, E, breaking stress (strength), σ(max), and maximum elongation, ε(max). The CM stress-strain curves revealed a biphasic behavior when tested at RH values below wet conditions. In the first phase, CM responded to the loads by instantaneous extension with no further extension recorded until a further load was added: defined as pure elastic strain (E(e)). In the second phase, CM responded by instantaneous extension and by some additional time-dependent extension, defined as viscoelastic strain (E(v)). When CMs were submerged in aqueous solution (wet), the stress-strain curves were monophasic, with both elastic and viscoelastic strain. E(e) depended on RH and was higher than E(v), which was independent of RH. Temperature decreased E(e) and σ(max) of tomato fruit CM. Temperature response was not linear but consisted of two temperature-independent phases separated by a transition temperature. This transition zone has been related previously to the presence of a secondary phase transition in the cutin matrix of the tomato fruit CM.

16.
Physiol Plant ; 118(1): 38-46, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12702012

RESUMO

The different growth responses under control and moderate salinity (70 mM NaCl) in relation to the carbon partitioning and sucrose metabolism in developing tomato fruits [20 days after anthesis (DAA), start of ripening and ripe stages] were studied in the cultivated tomato Lycopersicon esculentum Mill (cv. H-324-1), in the wild relative species L. cheesmanii (ac. LA-530) (hexose-accumulators), L. chmielewskii (ac. LA-1028) (sucrose-accumulator) and in two interspecific F1 hybrids (hexose-accumulators) (F1-530: H-324-1 x A-530, F1-1028: H-324-1 x A-1028). The higher salt-tolerance of the wild species and hybrids with respect to the domestic tomatoes was also observed at the fruit level because these genotypes were less affected in the assimilation of dry weight (DW) under salinity. With the exception of the wild tomatoes, the sink strength, evaluated as the dry matter accumulation rate (mg DW day-1) and the sink activity, evaluated as a relative growth rate (mg DW mg-1 day-1), were reduced during the early fruit growing period (20 DAA-start ripening). However, a total recovery of growth was registered in the salinized hybrid fruits during the late growing period (start of ripening-ripe fruits). The early reduction in sink activity in the hybrid and domestic fruits was related to a sucrose accumulation and a decrease in the total sucrolytic activity at 20 DAA, especially the cytoplasmic sucrolytic activities sucrose synthase (EC 2.4.1.13) and neutral invertase (EC 3.2.1.26). The further recovery in sink strength of the hybrid fruits was related to the maintenance of the insoluble acid invertase (EC 3.2.1.25) and the induction of the cytoplasmic sucrolytic activities, namely at the start of ripening stage, demonstrating the existence of an inverse relationship between these activities, which suggests a regulatory mechanism in order to maintain the sink capacity. The roles of different enzymes in the control of assimilate import under salinity in relation to the sucrose transport and possible regulatory mechanisms are discussed.

17.
Plant J ; 32(6): 905-14, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12492833

RESUMO

Osmotic stress severely limits plant growth and agricultural productivity. We have used mutagenesis to identify plant genes that are required for osmotic stress tolerance in tomato. As a result, we have isolated a novel mutant in tomato (tos1) caused by a single recessive nuclear mutation that is hypersensitive to general osmotic stress. Growth measurements demonstrated that the tos1 mutant is less sensitive to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed by the mutant at all developmental stages analysed. It is not caused by a deficiency in the synthesis of ABA because the tos1 seedlings accumulated more ABA than the wild type (WT) after osmotic stress. In contrast, the tss2 tomato mutant, which is also hypersensitive to osmotic stress, is hypersensitive to exogenous ABA. Comparative analysis of tos1 and tss2 indicates that appropriate ABA perception and signalling is essential for osmotic tolerance.


Assuntos
Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Solanum lycopersicum/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Germinação/efeitos dos fármacos , Germinação/fisiologia , Solanum lycopersicum/fisiologia , Manitol/farmacologia , Mutação , Pressão Osmótica/efeitos dos fármacos , Prolina/metabolismo , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...