Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 12(11): 1885-1893, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33689290

RESUMO

Aggregated tau protein is a core pathology present in several neurodegenerative diseases. Therefore, the development and application of positron emission tomography (PET) imaging radiotracers that selectively bind to aggregated tau in fibril form is of importance in furthering the understanding of these disorders. While radiotracers used in human PET studies offer invaluable insight, radiotracers that are also capable of visualizing tau fibrils in animal models are important tools for translational research into these diseases. Herein, we report the synthesis and characterization of a novel library of compounds based on the phenyl/pyridinylbutadienylbenzothiazoles/benzothiazolium (PBB3) backbone developed for this application. From this library, we selected the compound LM229, which binds to recombinant tau fibrils with high affinity (Kd = 3.6 nM) and detects with high specificity (a) pathological 4R tau aggregates in living cultured neurons and mouse brain sections from transgenic human P301S tau mice, (b) truncated human 151-351 3R (SHR24) and 4R (SHR72) tau aggregates in transgenic rat brain sections, and (c) tau neurofibrillary tangles in brain sections from Alzheimer's disease (3R/4R tau) and progressive supranuclear palsy (4R tau). With LM229 also shown to cross the blood-brain barrier in vivo and its effective radiolabeling with the radioisotope carbon-11, we have established a novel platform for PET translational studies using rodent transgenic tau models.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Tomografia por Emissão de Pósitrons , Ratos , Ratos Transgênicos , Proteínas tau/metabolismo
3.
J Alzheimers Dis ; 74(3): 951-964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116255

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder, affecting over 44 million people worldwide. There are no effective pharmaco-therapeutic options for prevention and treatment of AD. Non-pharmacological approaches may help patients suffering from AD to significantly ameliorate disease progression. In this study, we exposed a transgenic rat model (tg) of human tauopathy to enriched environment for 3 months. Behavioral testing at 6 months of age revealed improvement in functional deficits of tg rats reared under enriched conditions, while sedentary tg rats remained severely impaired. Interestingly, enriched environment did not reduce tau pathology. Analysis of neurotrophic factors revealed an increase of nerve growth factor (NGF) levels in the hippocampus of both enriched groups (tg and non-tg rats), reflecting a known effect of enriched environment on the hippocampal formation. On the contrary, NGF levels decreased markedly in the brainstem of enriched groups. The non-pharmacological treatment also reduced levels of tissue inhibitor of metalloproteinase 1 in the brainstem of transgenic rats. Expression analysis of inflammatory pathways revealed upregulation of microglial markers, such as MHC class II and Cd74, whereas levels of pro-inflammatory cytokines remained unaffected by enriched environment. Our results demonstrate that exposure to enriched environment can rescue functional impairment in tau transgenic rats without reducing tau pathology. We speculate that non-pharmacological treatment modulates the immune response to pathological tau protein inclusions, and thus reduces the damage caused by neuroinflammation.


Assuntos
Transtornos Cognitivos/prevenção & controle , Encefalite/prevenção & controle , Meio Ambiente , Tauopatias/psicologia , Tauopatias/reabilitação , Animais , Transtornos Cognitivos/psicologia , Citocinas/metabolismo , Encefalite/psicologia , Humanos , Masculino , Fator de Crescimento Neural/metabolismo , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Receptores CCR2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Neurochem Res ; 45(1): 180-187, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31055738

RESUMO

Spinal cord injury (SCI) is a severe disorder of the CNS leading to tissue damage and disability. Because it is critical to understand the pathological processes, it is important to find efficient ways to diagnose the severity of injured spinal cord tracts in situ from beginning up to a certain level of recovery following therapeutic interventions. In the current study, we set-up the criteria for diffusion tensor imaging (DTI) in order to capture changes of nerve fibre tracts in rat spinal cord compression injury. We tested four DTI parameters, such as fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity at the lesion site, in time course of 7 weeks. Afterwards, we compared DTI data with histological results and locomotor outcomes to examine their consistency and capability of reflecting the lesion development in time. Our data confirm that DTI is a valuable in vivo imaging tool capable to distinguish damaged white matter tracts after mild SCI in rat. Fractional anisotropy showed decreased values for injury site, while the mean diffusivity had higher values, with increased both axial and radial diffusivity in comparison to control subjects. Thus, the combination of DTI parameters can reflect the severity of lesion in time and may correlate with histological evaluation of spared tissue, but not with locomotor recovery following mild injury associated with spontaneous recovery.


Assuntos
Imagem de Tensor de Difusão/métodos , Fibras Nervosas Mielinizadas/patologia , Traumatismos da Medula Espinal/diagnóstico por imagem , Animais , Masculino , Ratos , Ratos Wistar , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/lesões
5.
Neurochem Res ; 45(1): 134-143, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31006093

RESUMO

Spinal cord injury (SCI) often leads to irreversible neuro-degenerative changes with life-long consequences. While there is still no effective therapy available, the results of past research have led to improved quality of life for patients suffering from partial or permanent paralysis. In this review we focus on the need, importance and the scientific value of experimental animal models simulating SCI in humans. Furthermore, we highlight modern imaging tools determining the location and extent of spinal cord damage and their contribution to early diagnosis and selection of appropriate treatment. Finally, we focus on available cellular and acellular therapies and novel combinatory approaches with exosomes and active biomaterials. Here we discuss the efficacy and limitations of adult mesenchymal stem cells which can be derived from bone marrow, adipose tissue or umbilical cord blood and its Wharton's jelly. Special attention is paid to stem cell-derived exosomes and smart biomaterials due to their special properties as a delivery system for proteins, bioactive molecules or even genetic material.


Assuntos
Modelos Animais de Doenças , Neuroimagem/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Procedimentos Neurocirúrgicos/métodos , Tomografia por Emissão de Pósitrons/métodos , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
6.
Mol Neurobiol ; 56(1): 621-631, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29770957

RESUMO

One of the key features of misfolded tau in human neurodegenerative disorders is its propagation from one brain area into many others. In the last decade, in vivo tau spreading has been replicated in several mouse transgenic models expressing mutated human tau as well as in normal non-transgenic mice. In this study, we demonstrate for the first time that insoluble tau isolated from human AD brain induces full-blown neurofibrillary pathology in a sporadic rat model of tauopathy expressing non-mutated truncated tau protein. By using specific monoclonal antibodies, we were able to monitor the spreading of tau isolated from human brain directly in the rat hippocampus. We found that exogenous human AD tau was able to spread from the area of injection and induce tau pathology. Interestingly, solubilisation of insoluble AD tau completely abolished the capability of tau protein to induce and spread of neurofibrillary pathology in the rat brain. Our results show that exogenous tau is able to induce and drive neurofibrillary pathology in rat model for human tauopathy in a similar way as it was described in various mouse transgenic models. Rat tau spreading model has many advantages over mouse and other organisms including size and complexity, and thus is highly suitable for identification of pathogenic mechanism of tau spreading.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Ratos , Ratos Transgênicos , Tauopatias/patologia
7.
Front Aging Neurosci ; 11: 343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920624

RESUMO

Alzheimer's disease (AD), the most common tauopathy, is an age-dependent, progressive neurodegenerative disease. Epidemiological studies implicate the role of genetic background in the onset and progression of AD. Despite mutations in familial AD, several risk factors have been implicated in sporadic AD, of which the onset is unknown. In AD, there is a sequential and hierarchical spread of tau pathology to other brain areas. Studies have strived to understand the factors that influence this characteristic spread. Using transgenic rat models with different genetic backgrounds, we reported that the genetic background may influence the manifestation of neurofibrillary pathology. In this study we investigated whether genetic background has an influence in the spread of tau pathology, using hippocampal inoculations of insoluble tau from AD brains in rodent models of tauopathy with either a spontaneously hypertensive (SHR72) or Wistar-Kyoto (WKY72) genetic background. We observed that insoluble tau from human AD induced AT8-positive neurofibrillary structures in the hippocampus of both lines. However, there was no significant difference in the amount of neurofibrillary structures, but the extent of spread was prominent in the W72 line. On the other hand, we observed significantly higher levels of AT8-positive structures in the parietal and frontal cortical areas in W72 when compared to SHR72. Interestingly, we also observed that the microglia in these brain areas in W72 were predominantly phagocytic in morphology (62.4% in parietal and 47.3% in frontal), while in SHR72 the microglia were either reactive or ramified (67.2% in parietal and 84.7% in frontal). The microglia in the hippocampus and occipital cortex in both lines were reactive or ramified structures. Factors such as gender or age are not responsible for the differences observed in these animals. Put together, our results, for the first time, show that the immune response modulating genetic variability is one of the factors that influences the propagation of tau neurofibrillary pathology.

8.
Sci Rep ; 8(1): 16083, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382158

RESUMO

We report, for the first time, the detection and specific localization of long-chain acylcarnitines (LC ACs) along the lesion margins in an experimental model of spinal cord injury (SCI) using 3D mass spectrometry imaging (MSI). Acylcarnitines palmitoylcarnitine (AC(16:0)), palmitoleoylcarnitine (AC(16:1)), elaidic carnitine (AC(18:1)) and tetradecanoylcarnitine (AC(14:1)) were detected as early as 3 days post injury, and were present along the lesion margins 7 and 10 days after SCI induced by balloon compression technique in the rat. 3D MSI revealed the heterogeneous distribution of these lipids across the injured spinal cord, appearing well-defined at the lesion margins rostral to the lesion center, and becoming widespread and less confined to the margins at the region located caudally. The assigned acylcarnitines co-localize with resident microglia/macrophages detected along the lesion margins by immunofluorescence. Given the reported pro-inflammatory role of these acylcarnitines, their specific spatial localization along the lesion margin could hint at their potential pathophysiological roles in the progression of SCI.


Assuntos
Carnitina/análogos & derivados , Imageamento Tridimensional/métodos , Macrófagos/metabolismo , Microglia/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Traumatismos da Medula Espinal/metabolismo , Animais , Carnitina/metabolismo , Processamento de Imagem Assistida por Computador , Macrófagos/patologia , Masculino , Microglia/patologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/patologia
10.
Neurol Res ; 40(5): 372-380, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29619904

RESUMO

Objectives Recently, it has been confirmed, that excess fluid and waste products from the brain are drained into the cerebrospinal fluid (CSF) and afterwards cleared via the olfactory route and/or lymphatic vessels in the brain dura and corresponding extracranial lymphatic structures. Therefore, the aim of present study was to monitor time-dependent uptake of Evans blue (EB) tracer from subarachnoid space into the meningeal lymphatic vessels and extracranial lymph nodes in rats during 3 hours-12 days. Methods EB was injected into the cisterna magna of anesthetized rats and after required survival, plasma, brain dura matter and corresponding lymph nodes (cervical, thoracic and lumbar) were dissected and processed for lymphatic vessels analyses using immunofluorescence and immunohistochemistry. Furthermore, we have used sensitive ultra-high-performance liquid chromatography (UHPLC) method for the determination of EB concentrations in selected samples. Results Using a combination of imaging methods, we have detected two different types of the vascular structures in the brain dura and in deep cervical lymph nodes. The blood vessels, which were RECA-1 + positive and the lymphatic-like vessels, expressing bright intense red fluorescence of EB tracer. Subsequently, using UHPLC with UV detection, we have quantified the EB concentration in positive structures by 3 hours up to 12 days after tracer delivery. A significant increase of EB concentration was detected in deep cervical lymph nodes already at 3 hours with a peak at 1 day that decreased to about one-tenth of its peak value by 12 days. Similar pattern was detected in brain dura. On the contrary, the brain tissue and plasma were almost negative for EB tracer during all tested time periods. Conclusion Our results demonstrate the dynamic changes of EB in meningeal lymphatic vessels and in deep cervical lymph nodes, thus recapitulating the downstream outflow of intracisternally injected tracer during 3 hours-12 days via dura mater lymphatic vessels towards corresponding extracranial draining system, particularly the deep cervical lymph nodes.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Corantes/farmacocinética , Azul Evans/farmacocinética , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Meninges/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Imuno-Histoquímica , Linfonodos/citologia , Vasos Linfáticos/citologia , Masculino , Meninges/irrigação sanguínea , Meninges/citologia , Microscopia de Fluorescência , Ratos Wistar
11.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543759

RESUMO

It was recently shown that the conditioned medium (CM) of mesenchymal stem cells can enhance viability of neural and glial cell populations. In the present study, we have investigated a cell-free approach via CM from rat bone marrow stromal cells (MScCM) applied intrathecally (IT) for spinal cord injury (SCI) recovery in adult rats. Functional in vitro test on dorsal root ganglion (DRG) primary cultures confirmed biological properties of collected MScCM for production of neurosphere-like structures and axon outgrowth. Afterwards, rats underwent SCI and were treated with IT delivery of MScCM or vehicle at postsurgical Days 1, 5, 9, and 13, and left to survive 10 weeks. Rats that received MScCM showed significantly higher motor function recovery, increase in spared spinal cord tissue, enhanced GAP-43 expression and attenuated inflammation in comparison with vehicle-treated rats. Spared tissue around the lesion site was infiltrated with GAP-43-labeled axons at four weeks that gradually decreased at 10 weeks. Finally, a cytokine array performed on spinal cord extracts after MScCM treatment revealed decreased levels of IL-2, IL-6 and TNFα when compared to vehicle group. In conclusion, our results suggest that molecular cocktail found in MScCM is favorable for final neuroregeneration after SCI.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Gânglios Espinais/citologia , Masculino , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
12.
J Alzheimers Dis ; 54(2): 831-43, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27567836

RESUMO

Alzheimer's disease (AD) represents the most common neurodegenerative disorder. Several animal models have been developed in order to test pathophysiological mechanisms of the disease and to predict effects of pharmacological interventions. Here we examine the molecular and behavioral features of R3m/4 transgenic mice expressing human non-mutated truncated tau protein (3R tau, aa151-391) that were previously used for efficacy testing of passive tau vaccine. The mouse model reliably recapitulated crucial histopathological features of human AD, such as pre-tangles, neurofibrillary tangles, and neuropil threads. The pathology was predominantly located in the brain stem. Transgenic mice developed mature sarkosyl insoluble tau complexes consisting of mouse endogenous and human truncated and hyperphosphorylated forms of tau protein. The histopathological and biochemical features were accompanied by significant sensorimotor impairment and reduced lifespan. The sensorimotor impairment was monitored by a highly sensitive, fully-automated tool that allowed us to assess early deficit in gait and locomotion. We suggest that the novel transgenic mouse model can serve as a valuable tool for analysis of the therapeutic efficacy of tau vaccines for AD therapy.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Emaranhados Neurofibrilares/metabolismo , Tauopatias/metabolismo , Proteínas tau/biossíntese , Animais , Encéfalo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Tauopatias/patologia
13.
Transl Neurosci ; 6(1): 214-226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28123806

RESUMO

Synapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer's disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer's disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.

14.
J Alzheimers Dis ; 43(4): 1157-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25147110

RESUMO

Stress may accelerate onset of neurodegenerative diseases in vulnerable subjects and, vice versa, neurodegeneration affects the responsiveness to stressors. We investigated the neuroendocrine response to immobilization stress in normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and transgenic rats of respective WKY and SHR strains overexpressing human truncated tau protein. Plasma levels of epinephrine, norepinephrine, and corticosterone were determined. An immobilization-induced elevation of epinephrine and norepinephrine was significantly reduced in WKY transgenic rats compared to WKY wild-type rats, while no differences were seen between SHR transgenic and SHR wild-type animals. Our data have shown that sympathoadrenal system response to stress strongly depends on both tau protein-induced neurodegeneration and genetic background of experimental animals.


Assuntos
Predisposição Genética para Doença , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Tauopatias/genética , Tauopatias/fisiopatologia , Animais , Corticosterona/sangue , Modelos Animais de Doenças , Epinefrina/sangue , Norepinefrina/sangue , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Transgênicos , Restrição Física , Especificidade da Espécie , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Curr Alzheimer Res ; 11(10): 992-1001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25387337

RESUMO

Alzheimer's disease (AD) represents the most prevalent form of dementia in the elderly. However, the pathological mechanisms underlying the development and progression of AD are only partially understood. To date, the accumulated clinical and experimental evidence indicate that the locus coeruleus (LC), the main source of brain's norepinephrine, represents "the epicenter" of pathology leading to the development of AD. Evidence for this includes observations that neurons of the LC modulate several processes that are altered in brains of AD patients, including synaptic plasticity, neuroinflammation, neuronal metabolism, and blood-brain-barrier permeability. Moreover, the LC undergoes significant degeneration in the brains of AD patients and is considered a source of the prion-like spreading of tau pathology to forebrain structures innervated by the noradrenergic neurons of the LC. Furthermore, lesions of the LC exaggerate AD-related pathology, while augmentation of the brain's noradrenergic neurotransmission reduces both neuroinflammation and cognitive decline. We hypothesize that better understanding the role of the LC neurons in AD pathogenesis may lead to development of new strategies for the treatment of AD.


Assuntos
Neurônios Adrenérgicos/patologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Locus Cerúleo/patologia , Doença de Alzheimer/complicações , Animais , Encefalite/etiologia , Humanos , Degeneração Neural/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...