Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7618, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494351

RESUMO

Renormalisation group methods are among the most important techniques for analysing the physics of many-body systems: by iterating a renormalisation group map, which coarse-grains the description of a system and generates a flow in the parameter space, physical properties of interest can be extracted. However, recent work has shown that important physical features, such as the spectral gap and phase diagram, may be impossible to determine, even in principle. Following these insights, we construct a rigorous renormalisation group map for the original undecidable many-body system that appeared in the literature, which reveals a renormalisation group flow so complex that it cannot be predicted. We prove that each step of this map is computable, and that it converges to the correct fixed points, yet the resulting flow is uncomputable. This extreme form of unpredictability for renormalisation group flows had not been shown before and goes beyond the chaotic behaviour seen previously.


Assuntos
Física
2.
Nat Commun ; 12(1): 452, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469011

RESUMO

The phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. In this work, we prove that the task of determining the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly constructing a continuous one-parameter family of Hamiltonians H(φ), where [Formula: see text], for which this is the case. The H(φ) are translationally-invariant, with nearest-neighbour couplings on a 2D spin lattice. As well as implying uncomputablity of phase diagrams, our result also proves that undecidability can hold for a set of positive measure of a Hamiltonian's parameter space, whereas previous results only implied undecidability on a zero measure set. This brings the spectral gap undecidability results a step closer to standard condensed matter problems, where one typically studies phase diagrams of many-body models as a function of one or more continuously varying real parameters, such as magnetic field strength or pressure.

3.
Sci Am ; 319(4): 28-37, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30273308
4.
Proc Natl Acad Sci U S A ; 115(38): 9497-9502, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30166447

RESUMO

Quantum many-body systems exhibit an extremely diverse range of phases and physical phenomena. However, we prove that the entire physics of any quantum many-body system can be replicated by certain simple, "universal" spin-lattice models. We first characterize precisely what it means for one quantum system to simulate the entire physics of another. We then fully classify the simulation power of all two-qubit interactions, thereby proving that certain simple models can simulate all others, and hence are universal. Our results put the practical field of analogue Hamiltonian simulation on a rigorous footing and take a step toward justifying why error correction may not be required for this application of quantum information technology.

5.
Proc Natl Acad Sci U S A ; 115(1): 19-23, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29259107

RESUMO

Can the properties of the thermodynamic limit of a many-body quantum system be extrapolated by analyzing a sequence of finite-size cases? We present models for which such an approach gives completely misleading results: translationally invariant, local Hamiltonians on a square lattice with open boundary conditions and constant spectral gap, which have a classical product ground state for all system sizes smaller than a particular threshold size, but a ground state with topological degeneracy for all system sizes larger than this threshold. Starting from a minimal case with spins of dimension 6 and threshold lattice size [Formula: see text], we show that the latter grows faster than any computable function with increasing local spin dimension. The resulting effect may be viewed as a unique type of quantum phase transition that is driven by the size of the system rather than by an external field or coupling strength. We prove that the construction is thermally robust, showing that these effects are in principle accessible to experimental observation.

6.
Science ; 351(6278): 1180-3, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965624

RESUMO

Spin models are used in many studies of complex systems because they exhibit rich macroscopic behavior despite their microscopic simplicity. Here, we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain "universal models," with at most polynomial overhead. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal and show that one of the simplest and most widely studied spin models, the two-dimensional Ising model with fields, is universal. Our results may facilitate physical simulations of Hamiltonians with complex interactions.

7.
Nature ; 528(7581): 207-11, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26659181

RESUMO

The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

8.
Phys Rev Lett ; 108(12): 120503, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540563

RESUMO

The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this Letter, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70 years).

9.
Phys Rev Lett ; 107(25): 250504, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243059

RESUMO

We describe two quantum channels that individually cannot send any classical information without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero-capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.

10.
Phys Rev Lett ; 104(23): 230503, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867220

RESUMO

Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behavior constitutes the field of classical zero-error information theory. We show that, given a single use of certain classical channels, entangled states of a system shared by the sender and receiver can be used to increase the number of (classical) messages which can be sent without error. In particular, we show how to construct such a channel based on any proof of the Kochen-Specker theorem. We investigate the connection to pseudotelepathy games. The use of generalized nonsignaling correlations to assist in this task is also considered. In this case, an elegant theory results and, remarkably, it is sometimes possible to transmit information with zero error using a channel with no unassisted zero-error capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...