Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 523: 1-6, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211082

RESUMO

Cerebral collaterals are recruited after arterial occlusion with a protective effect on tissue outcome in acute ischemic stroke. Head down tilt 15° (HDT15) is a simple, low cost and accessible procedure that could be applied as an emergency treatment, before recanalization therapies, with the aim to increase cerebral collateral flow. Spontaneously hypertensive rats have been shown to display anatomical differences in morphology and function of cerebral collaterals, compared to other rat strains, resulting in an overall poor collateral circulation. We investigate the efficacy and safety of HDT15 in spontaneously hypertensive (SHR) rats, which were considered as an animal stroke model with poor collaterals. Cerebral ischemia was induced by 90 minute endovascular occlusion of the middle cerebral artery (MCA). SHR rats were randomized to HDT15 or flat position (n = 19). HDT15 was applied 30 minutes after occlusion and lasted 60 minutes, until reperfusion. HDT15 application increased cerebral perfusion (+16.6% versus +6.1%; p = 0.0040) and resulted in a small reduction of infarct size (83.6 versus 107.1 mm3; - 21.89%; p = 0.0272), but it was not associated with early neurological improvement, compared to flat position. Our study suggests that the response to HDT15 during MCA occlusion is dependent on baseline collaterals. Nonetheless, HDT15 promoted a mild improvement of cerebral hemodynamics even in subjects with poor collaterals, without safety concerns.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Circulação Cerebrovascular/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça , Ratos Endogâmicos SHR
2.
Nanotheranostics ; 7(2): 176-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793350

RESUMO

Background: The objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in vivo, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Methods: Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances. A pre-clinical study was performed in rats with focal cerebral injury which intracerebrally received AuNPs-labelled therapeutic cells encapsulated in a INPs-labelled scaffold. Animals were imaged in vivo with SKES-CT and back-to-back with SPCCT. Results: SKES-CT revealed to be reliable for quantification of gold and iodine, whether alone or mixed. In the preclinical model, SKES-CT showed that AuNPs remained at the site of cell injection, while INPs expanded within and/or along the lesion border, suggesting dissociation of both components in the first days post-administration. Compared to SKES-CT, SPCCT was able to correctly locate gold, but not completely located iodine. When SKES-CT was used as reference, SPCCT gold quantification appeared very accurate both in vitro and in vivo. Iodine quantification by SPCCT was also quite accurate, albeit less so than for gold. Conclusion: We here provide the proof-of-concept that SKES-CT is a novel method of choice for performing dual-contrast agent imaging in the context of brain regenerative therapy. SKES-CT may also serve as ground truth for emerging technologies such as multicolour clinical SPCCT.


Assuntos
Lesões Encefálicas , Iodo , Nanopartículas Metálicas , Ratos , Animais , Meios de Contraste , Ouro , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia
3.
Eur J Neurosci ; 57(12): 2149-2159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300727

RESUMO

Neurological outcome after ischemic stroke depends on residual salvageable brain tissue at the time of recanalization. Head down tilt 15° (HDT15) was proven effective in reducing infarct size and improving functional outcome in rats with transient middle cerebral artery occlusion (t-MCAO) by increasing cerebral perfusion within the ischemic penumbra. In this pooled analysis, individual animal-level data from three experimental series were combined in a study population of 104 t-MCAO rats (45 in HDT15 group and 59 in flat position group). Co-primary outcomes were infarct size and functional outcome at 24 h in both groups. The secondary outcome was hemodynamic change induced by HDT15 in ischemic and non-ischemic hemispheres in a subgroup of animals. Infarct size at 24 h was smaller in HDT15 group than in flat position group (absolute mean difference 31.69 mm3 , 95% CI 9.1-54.2, Cohen's d 0.56, p = 0.006). Functional outcome at 24 h was better in HDT15 group than in flat position group (median [IQR]: 13[10-16] vs. 11), with a shift in the distribution of the neurobehavioural scores in favour of HDT15. Mean cerebral perfusion in the ischemic hemisphere was higher during HDT15 than before its application (Perfusion Unit [P.U.], mean ± SD: 52.5 ± 19.52 P.U. vs. 41.25 ± 14.54 P.U., mean of differences 13.36, 95% CI 7.5-19.18, p = 0.0002). Mean cerebral perfusion in the non-ischemic hemisphere before and during HDT15 was unchanged (P.U., mean ± SD: 94.1 ± 33.8 P.U. vs. 100.25 ± 25.34 P.U., mean of differences 3.95, 95%, CI -1.9 to 9.6, p = 0.1576). This study confirmed that HDT15 improves the outcome in t-MCAO rats by promoting cerebral perfusion in the ischemic territory, without disrupting hemodynamics in non-ischemic areas.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Decúbito Inclinado com Rebaixamento da Cabeça , Encéfalo , Infarto da Artéria Cerebral Média , Hemodinâmica
4.
Nanotheranostics ; 4(3): 129-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483519

RESUMO

Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.


Assuntos
Lesões Encefálicas , Encéfalo , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Rastreamento de Células , Estudos de Viabilidade , Masculino , Fótons , Ratos , Ratos Sprague-Dawley
5.
J Cereb Blood Flow Metab ; 37(10): 3344-3354, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28112023

RESUMO

Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.


Assuntos
Isquemia Encefálica/terapia , Circulação Cerebrovascular , Circulação Colateral/efeitos dos fármacos , Acidente Vascular Cerebral/terapia , Animais , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Infarto da Artéria Cerebral Média , Perfusão , Ratos
6.
J Cereb Blood Flow Metab ; 37(6): 2159-2170, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27466372

RESUMO

High variability in infarct size is common in experimental stroke models and affects statistical power and validity of neuroprotection trials. The aim of this study was to explore cerebral collateral flow as a stratification factor for the prediction of ischemic outcome. Transient intraluminal occlusion of the middle cerebral artery was induced for 90 min in 18 Wistar rats. Cerebral collateral flow was assessed intra-procedurally using multi-site laser Doppler flowmetry monitoring in both the lateral middle cerebral artery territory and the borderzone territory between middle cerebral artery and anterior cerebral artery. Multi-modal magnetic resonance imaging was used to assess acute ischemic lesion (diffusion-weighted imaging, DWI), acute perfusion deficit (time-to-peak, TTP), and final ischemic lesion at 24 h. Infarct volumes and typology at 24 h (large hemispheric versus basal ganglia infarcts) were predicted by both intra-ischemic collateral perfusion and acute DWI lesion volume. Collateral flow assessed by multi-site laser Doppler flowmetry correlated with the corresponding acute perfusion deficit using TTP maps. Multi-site laser Doppler flowmetry monitoring was able to predict ischemic outcome and perfusion deficit in good agreement with acute MRI. Our results support the additional value of cerebral collateral flow monitoring for outcome prediction in experimental ischemic stroke, especially when acute MRI facilities are not available.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Circulação Colateral/fisiologia , Fluxometria por Laser-Doppler/métodos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Masculino , Valor Preditivo dos Testes , Ratos Wistar , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/fisiopatologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-26933488

RESUMO

Cerebral collateral circulation is a subsidiary vascular network, which is dynamically recruited after arterial occlusion, and represents a powerful determinant of ischemic stroke outcome. Although several methods may be used for assessing cerebral collaterals in the acute phase of ischemic stroke in humans and rodents, they are generally underutilized. Experimental stroke models may play a unique role in understanding the adaptive response of cerebral collaterals during ischemia and their potential for therapeutic modulation. The systematic assessment of collateral perfusion in experimental stroke models may be used as a "stratification factor" in multiple regression analysis of neuroprotection studies, in order to control the within-group variability. Exploring the modulatory mechanisms of cerebral collaterals in stroke models may promote the translational development of therapeutic strategies for increasing collateral flow and directly compare them in term of efficacy, safety and feasibility. Collateral therapeutics may have a role in the hyperacute (even pre-hospital) phase of ischemic stroke, prior to recanalization therapies.

8.
Neurobiol Dis ; 74: 305-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484287

RESUMO

Intracranial collaterals are dynamically recruited after arterial occlusion and are emerging as a strong determinant of tissue outcome in both human and experimental ischemic stroke. The relationship between collateral flow and ischemic penumbra remains largely unexplored in pre-clinical studies. The aim of the present study was to investigate the pattern of collateral flow with regard to penumbral tissue after transient middle cerebral artery (MCA) occlusion in rats. MCA was transiently occluded (90min) by intraluminal filament in adult male Wistar rats (n=25). Intracranial collateral flow was studied in terms of perfusion deficit and biosignal fluctuation analyses using multi-site laser Doppler monitoring. Molecular penumbra was defined by topographical mapping and quantitative signal analysis of Heat Shock Protein 70kDa (HSP70) immunohistochemistry. Functional deficit and infarct volume were assessed 24h after ischemia induction. The results show that functional performance of intracranial collaterals during MCA occlusion inversely correlated with HSP70 immunoreactive areas in both the cortex and the striatum, as well as with infarct size and functional deficit. Intracranial collateral flow was associated with reduced areas of both molecular penumbra and ischemic core and increased areas of intact tissue in rats subjected to MCA occlusion followed by reperfusion. Our findings prompt the development of collateral therapeutics to provide tissue-saving strategies in the hyper-acute phase of ischemic stroke prior to recanalization therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Corpo Estriado/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Antígenos Nucleares/metabolismo , Isquemia Encefálica/patologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Fluxometria por Laser-Doppler , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Índice de Gravidade de Doença , Acidente Vascular Cerebral/patologia
9.
J Vis Exp ; (72)2013 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-23439069

RESUMO

The translational potential of pre-clinical stroke research depends on the accuracy of experimental modeling. Cerebral perfusion monitoring in animal models of acute ischemic stroke allows to confirm successful arterial occlusion and exclude subarachnoid hemorrhage. Cerebral perfusion monitoring can also be used to study intracranial collateral circulation, which is emerging as a powerful determinant of stroke outcome and a possible therapeutic target. Despite a recognized role of Laser Doppler perfusion monitoring as part of the current guidelines for experimental cerebral ischemia, a number of technical difficulties exist that limit its widespread use. One of the major issues is obtaining a secure and prolonged attachment of a deep-penetration Laser Doppler probe to the animal skull. In this video, we show our optimized system for cerebral perfusion monitoring during transient middle cerebral artery occlusion by intraluminal filament in the rat. We developed in-house a simple method to obtain a custom made holder for twin-fibre (deep-penetration) Laser Doppler probes, which allow multi-site monitoring if needed. A continuous and prolonged monitoring of cerebral perfusion could easily be obtained over the intact skull.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/diagnóstico , Fluxometria por Laser-Doppler/métodos , Acidente Vascular Cerebral/diagnóstico , Animais , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Perfusão/métodos , Ratos
10.
Exp Neurol ; 233(2): 815-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22193110

RESUMO

Intracranial collaterals provide residual blood flow to penumbral tissue in acute ischemic stroke and contribute to infarct size variability in humans. In the present study, hemodynamic monitoring of the borderzone territory between the leptomeningeal branches of middle cerebral artery and anterior cerebral artery was compared to lateral middle cerebral artery territory, during common carotid artery occlusion and middle cerebral artery occlusion in rats. The functional performance of intracranial collaterals, shown by perfusion deficit in the territory of leptomeningeal branches either during common carotid artery occlusion or middle cerebral artery occlusion, showed significant variability among animals and consistently predicted infarct size and functional deficit. Our findings indicate that leptomeningeal collateral flow is a strong predictor of stroke severity in rats, similarly to humans. Monitoring of collateral blood flow in experimental stroke is essential for reducing variability in neuroprotection studies and accelerating the development of collateral therapeutics.


Assuntos
Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Circulação Colateral/fisiologia , Hemodinâmica/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patologia , Masculino , Valor Preditivo dos Testes , Ratos , Ratos Wistar , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...