Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1057, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316753

RESUMO

Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g., for creating nanoscale-ordered quantum emitters and achieving or probing strongly correlated electronic phases at relatively high temperatures. Here, we studied the exciton properties of WSe2/MoSe2 HSs from T = 6 K to room temperature using time-resolved and continuous-wave micro-photoluminescence also under a magnetic field. The exciton dynamics and emission lineshape evolution with temperature show clear signatures that MXs de-trap from the moiré potential and turn into free interlayer excitons (IXs) for temperatures above 100 K. The MX-to-IX transition is also apparent from the exciton magnetic moment reversing its sign when the moiré potential is not capable of localising excitons at elevated temperatures. Concomitantly, the exciton formation and decay times reduce drastically. Thus, our findings establish the conditions for a truly confined nature of the exciton states in a moiré superlattice with increasing temperature and photo-generated carrier density.

2.
Nano Lett ; 23(11): 4708-4715, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220259

RESUMO

Propagation of light-emitting quasiparticles is of central importance across the fields of condensed matter physics and nanomaterials science. We experimentally demonstrate diffusion of excitons in the presence of a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. Light emission from tightly bound exciton states in electrically gated WSe2 monolayer is detected using spatially and temporally resolved microscopy. The measurements reveal a nonmonotonic dependence of the exciton diffusion coefficient on the charge carrier density in both electron and hole doped regimes. Supported by analytical theory describing exciton-carrier interactions in a dissipative system, we identify distinct regimes of elastic scattering and quasiparticle formation determining exciton diffusion. The crossover region exhibits a highly unusual behavior of an increasing diffusion coefficient with increasing carrier densities. Temperature-dependent diffusion measurements further reveal characteristic signatures of freely propagating excitonic complexes dressed by free charges with effective mobilities up to 3 × 103 cm2/(V s).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...