Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 22(5): e52612, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949091

RESUMO

Many scientists, confined to home office by COVID-19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2
2.
Elife ; 102021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042048

RESUMO

Quiescence is a reversible G0 state essential for differentiation, regeneration, stem-cell renewal, and immune cell activation. Necessary for long-term survival, quiescent chromatin is compact, hypoacetylated, and transcriptionally inactive. How transcription activates upon cell-cycle re-entry is undefined. Here we report robust, widespread transcription within the first minutes of quiescence exit. During quiescence, the chromatin-remodeling enzyme RSC was already bound to the genes induced upon quiescence exit. RSC depletion caused severe quiescence exit defects: a global decrease in RNA polymerase II (Pol II) loading, Pol II accumulation at transcription start sites, initiation from ectopic upstream loci, and aberrant antisense transcription. These phenomena were due to a combination of highly robust Pol II transcription and severe chromatin defects in the promoter regions and gene bodies. Together, these results uncovered multiple mechanisms by which RSC facilitates initiation and maintenance of large-scale, rapid gene expression despite a globally repressive chromatin state.


Assuntos
Ciclo Celular , Senescência Celular , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
Genome Res ; 30(4): 635-646, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32188699

RESUMO

Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell-specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein-protein relationships and protein functions at the chromatin template.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Loci Gênicos , Proteoma , Proteômica , Transcrição Gênica , Sequenciamento de Cromatina por Imunoprecipitação , Biblioteca Genômica , Ligação Proteica , Proteômica/métodos , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
4.
Nucleic Acids Res ; 47(16): 8410-8423, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31226204

RESUMO

The nucleosome core regulates DNA-templated processes through the highly conserved nucleosome acidic patch. While structural and biochemical studies have shown that the acidic patch controls chromatin factor binding and activity, few studies have elucidated its functions in vivo. We employed site-specific crosslinking to identify proteins that directly bind the acidic patch in Saccharomyces cerevisiae and demonstrated crosslinking of histone H2A to Paf1 complex subunit Rtf1 and FACT subunit Spt16. Rtf1 bound to nucleosomes through its histone modification domain, supporting its role as a cofactor in H2B K123 ubiquitylation. An acidic patch mutant showed defects in nucleosome positioning and occupancy genome-wide. Our results provide new information on the chromatin engagement of two central players in transcription elongation and emphasize the importance of the nucleosome core as a hub for proteins that regulate chromatin during transcription.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Nucleares/genética , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
5.
Trends Biochem Sci ; 42(10): 788-798, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28870425

RESUMO

The conserved, multifunctional Polymerase-Associated Factor 1 complex (Paf1C) regulates all stages of the RNA polymerase (Pol) II transcription cycle. In this review, we examine a diverse set of recent studies from various organisms that build on foundational studies in budding yeast. These studies identify new roles for Paf1C in the control of gene expression and the regulation of chromatin structure. In exploring these advances, we find that various functions of Paf1C, such as the regulation of promoter-proximal pausing and development in higher eukaryotes, are complex and context dependent. As more becomes known about the role of Paf1C in human disease, interest in the molecular mechanisms underpinning Paf1C function will continue to increase.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Humanos , Fatores de Transcrição
6.
Mol Cell ; 64(4): 815-825, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840029

RESUMO

The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Formaldeído/química , Histonas/química , Histonas/genética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
7.
Cell ; 166(4): 1058-1058.e1, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518568

RESUMO

Transcription elongation is a key regulatory step in gene expression that is controlled by many proteins, and mechanisms, ranging from RNA Polymerase II pausing to cotranscriptional histone modifications.


Assuntos
Eucariotos/metabolismo , Elongação da Transcrição Genética , Animais , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Humanos , RNA Polimerase II/metabolismo
8.
PLoS Genet ; 11(8): e1005420, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26241481

RESUMO

Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity.


Assuntos
Histonas/metabolismo , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Ubiquitinação , Endopeptidases/genética , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Histonas/química , Metilação , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...