Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 102(2): e207945, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165337

RESUMO

BACKGROUND AND OBJECTIVES: Heterozygous variants in RAR-related orphan receptor B (RORB) have recently been associated with susceptibility to idiopathic generalized epilepsy. However, few reports have been published so far describing pathogenic variants of this gene in patients with epilepsy and intellectual disability (ID). In this study, we aimed to delineate the epilepsy phenotype associated with RORB pathogenic variants and to provide arguments in favor of the pathogenicity of variants. METHODS: Through an international collaboration, we analyzed seizure characteristics, EEG data, and genotypes of a cohort of patients with heterozygous variants in RORB. To gain insight into disease mechanisms, we performed ex vivo cortical electroporation in mouse embryos of 5 selected variants, 2 truncating and 3 missense, and evaluated on expression and quantified changes in axonal morphology. RESULTS: We identified 35 patients (17 male, median age 10 years, range 2.5-23 years) carrying 32 different heterozygous variants in RORB, including 28 single-nucleotide variants or small insertions/deletions (12 missense, 12 frameshift or nonsense, 2 splice-site variants, and 2 in-frame deletions), and 4 microdeletions; de novo in 18 patients and inherited in 10. Seizures were reported in 31/35 (89%) patients, with a median age at onset of 3 years (range 4 months-12 years). Absence seizures occurred in 25 patients with epilepsy (81%). Nineteen patients experienced a single seizure type: absences, myoclonic absences, or absences with eyelid myoclonia and focal seizures. Nine patients had absence seizures combined with other generalized seizure types. One patient had presented with absences associated with photosensitive occipital seizures. Three other patients had generalized tonic-clonic seizures without absences. ID of variable degree was observed in 85% of the patients. Expression studies in cultured neurons showed shorter axons for the 5 tested variants, both truncating and missense variants, supporting an impaired protein function. DISCUSSION: In most patients, the phenotype of the RORB-related disorder associates absence seizures with mild-to-moderate ID. In silico and in vitro evaluation of the variants in our cohort, including axonal morphogenetic experiments in cultured neurons, supports their pathogenicity, showing a hypomorphic effect.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Deficiência Intelectual , Humanos , Masculino , Animais , Camundongos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Lactente , Convulsões , Fenótipo , Epilepsia Tipo Ausência/genética , Epilepsia Generalizada/genética , Genótipo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares
2.
Epilepsy Curr ; 22(1): 64-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233204
3.
Am J Med Genet A ; 179(6): 1058-1062, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892814

RESUMO

CREBBP loss-of function variants cause Rubinstein-Taybi syndrome (RTS). There have been two separate reports of patients with missense variants in exon 30 or 31 of CREBBP in individuals lacking the characteristic facial and limb dysmorphism associated with RTS. Frequent features in this condition include variable intellectual disability, short stature, autistic behavior, microcephaly, feeding problems, epilepsy, recurrent upper airway infections, and mild hearing impairment. We report three further patients with de novo exon 31 CREBBP missense variants. The first individual has a c.5357G>A p. (Arg1786His) variant affecting the same codon as one of the previously described patients. Both these patients could be recognized by clinicians as mild RTS. Our second patient has a c.5602C>T p.(Arg1868Trp) variant that has been described in five other individuals who all share a strikingly similar phenotype. The third individual has a novel c.5354G>A p.(Cys1785Try) variant. Our reports expand the clinical spectrum to include ventriculomegaly, absent corpus callosum, staphyloma, cochlear malformations, and exomphalos. These additional cases also help to establish genotype-phenotype correlations in this disorder. After the first and last authors of the previous two reports, we propose to call this disorder "Menke-Hennekam syndrome" to establish it as a clinical entity distinct from RTS and to provide a satisfactory name for adoption by parents and professionals, thus facilitating appropriate clinical management and research.


Assuntos
Proteína de Ligação a CREB/genética , Éxons , Estudos de Associação Genética , Mutação de Sentido Incorreto , Fenótipo , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Estudos de Associação Genética/métodos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Síndrome
4.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464197

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder usually caused by mutations in methyl-CpG-binding protein 2 (MeCP2). RTT is typified by apparently normal development until 6-18 mo of age, when motor and communicative skills regress and hand stereotypies, autonomic symptoms, and seizures present. Restoration of MeCP2 function selectively to astrocytes reversed several deficits in a murine model of RTT, but the mechanism of this rescue is unknown. Astrocytes carry out many essential functions required for normal brain functioning, including extracellular K+ buffering. Kir4.1, an inwardly rectifying K+ channel, is largely responsible for the channel-mediated K+ regulation by astrocytes. Loss-of-function mutations in Kir4.1 in human patients result in a severe neurodevelopmental disorder termed EAST or SESAME syndrome. Here, we evaluated astrocytic Kir4.1 expression in a murine model of Rett syndrome. We demonstrate by chromatin immunoprecipitation analysis that Kir4.1 is a direct molecular target of MeCP2. Astrocytes from Mecp2-deficient mice express significantly less Kir4.1 mRNA and protein, which translates into a >50% deficiency in Ba2+-sensitive Kir4.1-mediated currents, and impaired extracellular potassium dynamics. By examining astrocytes in isolation, we demonstrate that loss of Kir4.1 is cell autonomous. Assessment through postnatal development revealed that Kir4.1 expression in Mecp2-deficient animals never reaches adult, wild-type levels, consistent with a neurodevelopmental disorder. These are the first data implicating a direct MeCP2 molecular target in astrocytes and provide novel mechanistic insight explaining a potential mechanism by which astrocytic dysfunction may contribute to RTT.


Assuntos
Astrócitos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Síndrome de Rett/genética , Animais , Regulação da Expressão Gênica , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Transgênicos , Síndrome de Rett/metabolismo
5.
Acta Neuropathol ; 132(1): 1-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961251

RESUMO

Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Humanos
6.
Glia ; 63(1): 23-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25066727

RESUMO

Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl(-) concentration ([Cl(-) ]i ) and consequently depolarizing, excitatory gamma-aminobutyric acid (GABA) responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl(-) ]i required for GABAA R-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target.


Assuntos
Neoplasias Encefálicas/metabolismo , Epilepsia/metabolismo , Glioma/metabolismo , Receptores de GABA-A/metabolismo , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Neoplasias Encefálicas/complicações , Epilepsia/etiologia , Feminino , Glioma/complicações , Interneurônios/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Cotransportadores de K e Cl-
7.
Am J Physiol Cell Physiol ; 301(5): C1150-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21813709

RESUMO

Among the most prevalent and deadly primary brain tumors, high-grade gliomas evade complete surgical resection by diffuse invasion into surrounding brain parenchyma. Navigating through tight extracellular spaces requires invading glioma cells to alter their shape and volume. Cell volume changes are achieved through transmembrane transport of osmolytes along with obligated water. The sodium-potassium-chloride cotransporter isoform-1 (NKCC1) plays a pivotal role in this process, and previous work has demonstrated that NKCC1 inhibition compromises glioma invasion in vitro and in vivo by interfering with the required cell volume changes. In this study, we show that NKCC1 activity in gliomas requires the With-No-Lysine Kinase-3 (WNK3) kinase. Western blots of patient biopsies and patient-derived cell lines shows prominent expression of Ste-20-related, proline-alanine-rich kinase (SPAK), oxidative stress response kinase (OSR1), and WNK family members 1, 3, and 4. Of these, only WNK3 colocalized and coimmunoprecipitated with NKCC1 upon changes in cell volume. Stable knockdown of WNK3 using specific short hairpin RNA constructs completely abolished NKCC1 activity, as measured by the loss of bumetanide-sensitive cell volume regulation. Consequently, WNK3 knockdown cells showed a reduced ability to invade across Transwell barriers and lacked bumetanide-sensitive migration. This data indicates that WNK3 is an essential regulator of NKCC1 and that WNK3 activates NKCC1-mediated ion transport necessary for cell volume changes associated with cell invasion.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Bumetanida/farmacologia , Linhagem Celular Tumoral , Tamanho Celular , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Antígenos de Histocompatibilidade Menor , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...