Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108214, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953943

RESUMO

Repetitive sequences represent about 45% of the human genome. Some are transposable elements (TEs) with the ability to change their position in the genome, creating genetic variability both as insertions or deletions, with potential pathogenic consequences. We used long-read nanopore sequencing to identify TE variants in the genomes of 24 patients with antithrombin deficiency. We identified 7 344 TE insertions and 3 056 TE deletions, 2 926 were not previously described in publicly available databases. The insertions affected 3 955 genes, with 6 insertions located in exons, 3 929 in introns, and 147 in promoters. Potential functional impact was evaluated with gene annotation and enrichment analysis, which suggested a strong relationship with neuron-related functions and autism. We conclude that this study encourages the generation of a complete map of TEs in the human genome, which will be useful for identifying new TEs involved in genetic disorders.

2.
J Adv Res ; 50: 145-158, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323370

RESUMO

INTRODUCTION: Whole-genome sequencing using nanopore technologies can uncover structural variants, which are DNA rearrangements larger than 50 base pairs. Nanopore technologies can also characterize their boundaries with single-base accuracy, owing to the kilobase-long reads that encompass either full variants or their junctions. Other methods, such as next-generation short read sequencing or PCR assays, are limited in their capabilities to detect or characterize structural variants. However, the existing software for nanopore sequencing data analysis still reports incomplete variant sets, which also contain erroneous calls, a considerable obstacle for the molecular diagnosis or accurate genotyping of populations. METHODS: We compared multiple factors affecting variant calling, such as reference genome version, aligner (minimap2, NGMLR, and lra) choice, and variant caller combinations (Sniffles, CuteSV, SVIM, and NanoVar), to find the optimal group of tools for calling large (>50 kb) deletions and duplications, using data from seven patients exhibiting gross gene defects on SERPINC1 and from a reference variant set as the control. The goal was to obtain the most complete, yet reasonably specific group of large variants using a single cell of PromethION sequencing, which yielded lower depth coverage than short-read sequencing. We also used a custom method for the statistical analysis of the coverage value to refine the resulting datasets. RESULTS: We found that for large deletions and duplications (>50 kb), the existing software performed worse than for smaller ones, in terms of both sensitivity and specificity, and newer tools had not improved this. Our novel software, disCoverage, could polish variant callers' results, improving specificity by up to 62% and sensitivity by 15%, the latter requiring other data or samples. CONCLUSION: We analyzed the current situation of >50-kb copy number variants with nanopore sequencing, which could be improved. The methods presented in this work could help to identify the known deletions and duplications in a set of patients, while also helping to filter out erroneous calls for these variants, which might aid the efforts to characterize a not-yet well-known fraction of genetic variability in the human genome.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Variações do Número de Cópias de DNA/genética , Genoma Humano
3.
J Mol Diagn ; 24(5): 462-475, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218943

RESUMO

Inherited antithrombin deficiency, the most severe form of thrombophilia, is predominantly caused by variants in SERPINC1. Few causal structural variants have been described, usually detected by multiplex ligation-dependent probe amplification or cytogenetic arrays, which only define the gain or loss and the approximate size and location. This study has done a complete dissection of the structural variants affecting SERPINC1 of 39 unrelated patients with antithrombin deficiency using multiplex ligation-dependent probe amplification, comparative genome hybridization array, long-range PCR, and whole genome nanopore sequencing. Structural variants, in all cases only affecting one allele, were deleterious and caused a severe type I deficiency. Most defects were deletions affecting exons of SERPINC1 (82.1%), but the whole cohort was heterogeneous, as tandem duplications, deletion of introns, or retrotransposon insertions were also detected. Their size was also variable, ranging from 193 bp to 8 Mb, and in 54% of the cases involved neighboring genes. All but two structural variants had repetitive elements and/or microhomologies in their breakpoints, suggesting a common mechanism of formation. This study also suggested regions recurrently involved in structural variants causing antithrombin deficiency and found three structural variants with a founder effect: the insertion of a retrotransposon, duplication of exon 6, and a 20-gene deletion. Finally, nanopore sequencing was determined to be the most appropriate method to identify and characterize all structural variants at nucleotide level, independently of their size or type.


Assuntos
Deficiência de Antitrombina III , Retroelementos , Deficiência de Antitrombina III/genética , Antitrombinas , Éxons/genética , Humanos , Íntrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...