Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(25): 10571-10591, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38855858

RESUMO

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Paládio , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Proliferação de Células/efeitos dos fármacos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Linhagem Celular Tumoral , Halogenação , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares
2.
Inorg Chem ; 63(2): 1083-1101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156413

RESUMO

A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 µM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.


Assuntos
Aldeídos , Antineoplásicos , Complexos de Coordenação , Leucemia , Rutênio , Humanos , Ligantes , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Dalton Trans ; 51(19): 7658-7672, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35510940

RESUMO

Ru(II) polypyridyl complexes are widely used in biological fields, due to their physico-chemical and photophysical properties. In this paper, a series of new chiral Ru(II) polypyridyl complexes (1-5) with the general formula {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} (bpy = 2,2'-bipyridyl; X,Y-sal = 5-bromosalicylaldehyde (1), 3,5-dibromosalicylaldehyde (2), 5-chlorosalicylaldehyde (3), 3,5-dichlorosalicylaldehyde (4) and 3-bromo-5-chlorosalicylaldehy (5)) were synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. Also, the structures of complexes 1 and 5 were determined by X-ray crystallography; these results showed that the central Ru atom adopts a distorted octahedral coordination sphere with two bpy and one halogen-substituted salicylaldehyde. DFT and TD-DFT calculations have been performed to explain the excited states of these complexes. The singlet states with higher oscillator strength are correlated with the absorption signals and are mainly described as 1MLCT from the ruthenium centre to the bpy ligands. The lowest triplet states (T1) are described as 3MLCT from the ruthenium center to the salicylaldehyde ligand. The theoretical results are in good agreement with the observed unstructured band at around 520 nm for complexes 2, 4 and 5. Biological studies on human cancer cells revealed that dihalogenated ligands endow the Ru(II) complexes with enhanced cytotoxicity compared to monohalogenated ligands. In addition, as far as the type of halogen is concerned, bromine is the halogen that provides the highest cytotoxicity to the synthesized complexes. All complexes induce cell cycle arrest in G0/G1 and apoptosis, but only complexes bearing Br are able to provoke an increase in intracellular ROS levels and mitochondrial dysfunction.


Assuntos
Compostos de Rutênio/química , Rutênio , Aldeídos , Halogenação , Halogênios , Humanos , Ligantes , Rutênio/química , Rutênio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Bioorg Chem ; 119: 105556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959175

RESUMO

In order to better understand the effect of structure, halogen substitution, metal ions and ligand flexibility on antiproliferative activity, eight Cu(II) complexes and eight Pt(II) complexes were obtained of 2,4-X1,X2-6-((pyridine-2-ylmethylamino)methyl)phenol and 2,4-X1,X2-6-((pyridine-2-ylmethylamino)ethyl)phenol (where X is Cl, Br, or I) ligands. The compounds were characterized with various techniques, such as FT-IR, NMR, elemental analysis and single-crystal X-ray diffraction (SCXRD). The X-ray structures showed that ligand acts as a bidentate and tridentate donor in Cu(II) and Pt(II) complexes, respectively. This difference in structures is due to the use or non-use of base in the preparation of complexes. Also, complexation of Cl2-H2L1 with CuCl2·2H2O gives two different types of structures: polymer (Cl2-H2L1-Cupolymer) and dimer (Cl2-H2L1-Cudimer), according to the crystal color. In addition, 1H NMR spectrum for platinum complexes display two set of signals that can be attributed to the presence of two isomers in solution. All complexes induced moderate to high reduction in A2780 and HCT116 cancer cell viability. However, only complexes bearing iodo- substituted in ligands exhibited significantly low cytotoxicity in normal fibroblasts when compared with cancer cell lines. The antiproliferative effect exhibited by I2-H2L2-Cu complex in A2780 cell line was due to induction of cell death mechanisms, namely by apoptosis and autophagy. I2-H2L2-Cu complex does not cause DNA cleavage but a slight delay in cell cycle was observed for the first 24 h of exposition. High cytotoxicity was related with the induction of intracellular ROS. This increase in intracellular ROS was not accompanied by destabilization of the mitochondrial membrane which is an indication that ROS are being triggered externally by I2-H2L2-Cu complex and in agreement with an extrinsic apoptosis activation. I2-H2L2-Cu complex has a pro-angiogenic effect, increasing the vascularization of the CAM in chicken embryos. This is also a very important characteristic in cancer treatment since the increased vascularization in tumors might facilitate the delivery of therapeutic drugs. Taken together, these results support the potential therapeutic of the I2-H2L2-Cu complex.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Halogênios/farmacologia , Platina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogênios/química , Humanos , Ligantes , Estrutura Molecular , Platina/química , Relação Estrutura-Atividade
5.
J Am Chem Soc ; 125(52): 16347-60, 2003 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-14692777

RESUMO

To determine the trans effect on the rates of reductive eliminations from arylpalladium(II) amido complexes, the reactions of arylpalladium amido complexes bearing symmetrical and unsymmetrical DPPF (DPPF = bis(diphenylphosphino)ferrocene) derivatives were studied. THF solutions of LPd(Ar)(NMeAr') (L = DPPF, DPPF-OMe, DPPF-CF3, DPPF-OMe,Ph, DPPF-Ph,CF3, and DPPF-OMe,CF3; Ar = C6H4-4-CF3; Ar' = C6H4-4-CH3, Ph, and C6H4-4-OMe) underwent C-N bond forming reductive elimination at -15 C to form the corresponding N-methyldiarylamine in high yield. Complexes ligated by symmetrical DPPF derivatives with electron-withdrawing substituents on the DPPF aryl groups underwent reductive elimination faster than complexes ligated by symmetrical DPPF derivatives with electron-donating substituents on the ligand aryl groups. Studies of arylpalladium amido complexes containing unsymmetrical DPPF ligands revealed several trends. First, the complex with the weaker donor trans to nitrogen and the stronger donor trans to the palladium-bound aryl group underwent reductive elimination faster than the regioisomeric complex with the stronger donor trans to nitrogen and the weaker donor trans to the palladium-bound aryl group. Second, the effect of varying the substituents on the phosphorus donor trans to the nitrogen was larger than the effect of varying the substituents on the phosphorus donor trans to the palladium-bound aryl group. Third, the difference in rate between the isomeric arylpalladium amido complexes was similar in magnitude to the differences in rates resulting from conventional variation of substituents on the symmetric phosphine ligands. This result suggests that the geometry of the complex is equal in importance to the donating ability of the dative ligands. The ratio of the differences in rates of reaction of the isomeric complexes was similar to the relative populations of the two geometric isomers. This result and consideration of transition state geometries suggest that the reaction rates are controlled more by substituent effects on ground state stability than on transition state energies. In addition, variation of the aryl group at the amido nitrogen showed systematically that complexes with more electron-donating groups at nitrogen undergo faster reductive elimination than those with less electron-donating groups at nitrogen.


Assuntos
Amidas/química , Aminas/química , Compostos Organometálicos/química , Paládio/química , Compostos Ferrosos/química , Espectroscopia de Ressonância Magnética , Metalocenos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...