Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Interface Focus ; 6(6): 20160058, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27920896

RESUMO

Gold-iron oxide composites were obtained by in situ reduction of an Au(III) precursor by an organic reductant (either potassium citrate or tiopronin) in a dispersion of preformed iron oxide ultrasmall magnetic (USM) nanoparticles. X-ray diffraction, transmission electron microscopy, chemical analysis and mid-infrared spectroscopy show the successful deposition of gold domains on the preformed magnetic nanoparticles, and the occurrence of either citrate or tiopronin as surface coating. The potential of the USM@Au nanoheterostructures as heat mediators for therapy through magnetic fluid hyperthermia was determined by calorimetric measurements under sample irradiation by an alternating magnetic field with intensity and frequency within the safe values for biomedical use. The USM@Au composites showed to be active heat mediators for magnetic fluid hyperthermia, leading to a rapid increase in temperature under exposure to an alternating magnetic field even under the very mild experimental conditions adopted, and their potential was assessed by determining their specific absorption rate (SAR) and compared with the pure iron oxide nanoparticles. Calorimetric investigation of the synthesized nanostructures enabled us to point out the effect of different experimental conditions on the SAR value, which is to date the parameter used for the assessment of the hyperthermic efficiency.

2.
Colloids Surf B Biointerfaces ; 137: 77-90, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26009265

RESUMO

This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling. Ordered mesoporous silica materials represent a valid choice as widely demonstrated. Both proteins and silica mesoporous materials possess charged surfaces, and here, the crucial role of pH, buffer, ionic strength and electrolyte type is posed in relation with loading/release of proteins onto/from the silica support through the analysis of adsorption and release processes. A delicate interplay of electrostatic and van der Waals interactions arises from considering electrolytes' effects on the two different charged surfaces. Clear outcomes concern the effect of pH and ionic strength. Protein loading onto the silica matrix is favored by an adsorbing solution having a pH close to the protein pI, and by a high ionic strength that reduces the Debye length. Release is instead favored by an adsorbing solution characterized by an intermediate ionic strength, close to the physiological values. Significant specific ions effects are shown to affect both proteins and silica matrices, as well as protein adsorption onto silica matrices. Further work is needed to quantify specific ion effects on the preservation of the biological activity, and on the release performance.


Assuntos
Eletrólitos/química , Proteínas/química , Dióxido de Silício/química , Adsorção , Microscopia Eletrônica de Transmissão , Porosidade
3.
ACS Biomater Sci Eng ; 2(5): 741-751, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33440571

RESUMO

Mesoporous silica nanoparticles (MSNs), based on the MCM-41 matrix, were functionalized with amino groups, and then with hyaluronic acid (HA) or chitosan (CHIT) to fabricate bioactive conjugates. The role of the functional groups toward cytotoxicity and cellular uptake was investigated using 3T3 mouse fibroblast cells. A very high biocompatibility of MSN-NH2, MSN-HA and MSN-CHIT matrices was assessed through the MTS biological assay and Coulter counter evaluation. No significant differences in cytotoxicity data arise from the presence of different functional groups in the investigated MSNs. Fluorescence microscopy experiments performed using fluorescein isothiocyanate-conjugated MSN-NH2, MSN-HA, and MSN-CHIT, and transmission electron microscopy experiments performed on slices of the investigated systems embedded in epoxy resins give evidence of significant differences due to type of functionalization in terms of cellular uptake and stability of the particles in the biological medium. MSN-NH2 and MSN-HA conjugates are easily internalized, the uptake of the HA-functionalized MSNs being much higher than that of the -NH2-functionalized MSNs. Differently, MSN-CHIT conjugates tend to give large aggregates dispersed in the medium or localized at the external surface of the cell membranes. Both fluorescence microscopy and TEM images show that the MSNs are distributed in the cytoplasm of the cells in the case of MSN-NH2 and MSN-HA, whereas only a few particles are internalized in the case of MSN-CHIT. Flow cytometry experiments confirmed quantitatively the selectively high cellular uptake of MSN-HA particles.

4.
Langmuir ; 31(34): 9458-63, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26267521

RESUMO

Ordered mesoporous silica (OMS) materials are receiving great attention as possible carriers for valuable but unstable drugs as, for example, therapeutic proteins. A key issue is to prove that the therapeutic protein is effectively able to penetrate the pores of OMS during the adsorption step. Here, we immobilized an antibody fragment [F(ab')GAMIgG] conjugated with ultrasmall gold nanoparticles (GNPs) onto amino-functionalized SBA-15 (SBA-NH2) mesoporous silica. The aim of this work is the visualization of the location of the conjugates adsorbed onto SBA-NH2 with transmission electron microscopy (TEM). Because of the ultrasmall size of GNPs (<1 nm), we use the silver enhancement procedure to amplify their size. In this procedure, ultrathin sections of conjugate-loaded SBA-NH2 particles are prepared by a ultramicrotome sectioning technique. The ultrasmall GNPs located on the top side of the 70-90 nm thick slices act as microcrystallization nucleation sites for the deposition of reduced metallic silver. Consequently, the ultrasmall GNPs increase their size. This allows for the direct imaging of the conjugates adsorbed. We clearly localize the F(ab')GAMIgG-GNPs conjugates either on the external surface of the particles or inside the mesopores of SBA-NH2 through TEM.


Assuntos
Anticorpos/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão/métodos , Dióxido de Silício/química , Prata/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
5.
Langmuir ; 28(47): 16355-63, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23126573

RESUMO

Experiments on bovine serum albumin (BSA) via potentiometric titration (PT) and electrophoretic light scattering (ELS) are used to study specific-ion binding. The effect is appreciable at a physiological concentration of 0.1 M. We found that anions bind to the protein surface at an acidic pH, where the protein carries a positive charge (Z(p) > 0), according to a Hofmeister series (Cl(-) < Br(-) < NO(3)(-) < I(-) < SCN(-)), as well as at the isoionic point (Z(p) = 0). The results obtained require critical interpretation. The measurements performed depend on electrostatic theories that ignore the very specific effects they are supposed to reveal. Notwithstanding this difficulty, we can still infer that different 1:1 sodium salts affect the BSA surface charge/pH curve because anions bind to the BSA surface with an efficiency which follows a Hofmeister series.


Assuntos
Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Eletroforese , Concentração de Íons de Hidrogênio , Íons/metabolismo , Luz , Modelos Moleculares , Potenciometria , Ligação Proteica , Conformação Proteica , Sais/química , Sais/metabolismo , Espalhamento de Radiação , Sódio/química , Sódio/metabolismo
6.
Phys Chem Chem Phys ; 14(13): 4343-6, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22373665

RESUMO

Hofmeister series reversal can occur with change in pH, or increase in salt concentration. The phenomena are a challenge for any theory of ion specific effects. Recent theoretical work predicts how a complex interplay between ionic sizes, hydration and dispersion forces explains Hofmeister series reversal. Electrophoretic mobility measurements on lysozyme suspensions reported here are consistent with the theory.


Assuntos
Muramidase/química , Ensaio de Desvio de Mobilidade Eletroforética , Concentração de Íons de Hidrogênio , Muramidase/metabolismo , Ligação Proteica , Sais/química , Trometamina/química
7.
Langmuir ; 27(18): 11597-604, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21834579

RESUMO

The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential).


Assuntos
Modelos Teóricos , Potenciometria/métodos , Soroalbumina Bovina/química , Animais , Bovinos , Ponto Isoelétrico , Concentração Osmolar , Cloreto de Sódio/química
8.
J Colloid Interface Sci ; 345(2): 448-53, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188377

RESUMO

In this work, we present the synthesis and characterization of n(+)-type porous silicon (PSi) layers. Our final aim is the fabrication of a biosensor that exploits the semiconductive properties of this material. PSi wafers were used as a matrix for enzyme adsorption. These wafers, as a result of their porous nanostructure, had a high surface area (360 m(2)/g) and pore size in the range 5-20 nm. The freshly prepared PSi was stabilized through controlled anodic oxidation. Two classes of samples differing for the level of oxidation were prepared. The first class was oxidized up to 2V (LO-PSi), whereas the second class was oxidized up to 10 V (HO-PSi). Both samples were used for the adsorption of Candida rugosa lipase. A significantly higher loading was ascertained for LO-PSi (140 mg/g) compared to HO-PSi (47 mg/g). The different hydrophobic-hydrophilic balance of the PSi surfaces induced by the different oxidation voltage affects the physical interactions that address the adsorption process of the lipase. The higher loading achieved with the LO-PSi resulted in a higher activity of the immobilized biocatalyst but in a lower catalytic efficiency. The two biocatalysts showed an acceptable stability toward storage (pH 5 buffer solution at 5 °C) within 2 weeks.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Semicondutores , Silício/química , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...