Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731410

RESUMO

Cirsium japonicum Fisch. ex DC. (CF) and Cirsium setosum (Willd.) MB (CS) are commonly used clinically to stop bleeding and eliminate carbuncles. Still, CF is mainly used for treating inflammation, while CS favors hemostasis. Therefore, the present study used UHPLC-MS to analyze the main chemical constituents in CF-CS extract. We optimized the extraction process using single-factor experiments and response surface methodology. Afterward, the hemostatic and anti-inflammatory effects of CF-CS extract were investigated by determining the clotting time in vitro, the bleeding time of rabbit trauma, and the induction of rabbit inflammation using xylene and lipopolysaccharide. The study of hemostatic and anti-inflammatory effects showed that the CF-CS, CF, and CS extract groups could significantly shorten the coagulation time and bleeding time of rabbits compared with the blank group (p < 0.01); compared with the model group, it could dramatically inhibit xylene-induced ear swelling in rabbits and the content of TNF-α, IL-6, and IL-1ß in the serum of rabbits (p < 0.01). The results showed that combined CF and CS synergistically increased efficacy. CF-CS solved the problem of the single hemostatic and anti-inflammatory efficacy of a single drug, which provided a new idea for the research and development of natural hemostatic and anti-inflammatory medicines.


Assuntos
Anti-Inflamatórios , Cirsium , Hemostáticos , Extratos Vegetais , Animais , Coelhos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cirsium/química , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino
2.
J Pharm Biomed Anal ; 240: 115929, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147703

RESUMO

A quantitative structure retention relationship (QSRR) method was developed to identify flavonoid isomers auxiliary using an ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method based on the linear relationships between the Ln(k') values of flavonoids and their hydrogen bonding energy (XAH) and dissolution energy (ES). Chromatographic separation was achieved with a Hypersil GOLD C18 (100 mm × 2.1 mm, 1.9 µm) column and Agilent SB-C18 (2.1 ×50 mm, 1.8 µm) column on a Dionex Ultimate 3000 RSLC chromatograph. Compounds were eluted isocratically using a mobile phase containing 0.1% formic acid/water solution and methanol at a ratio of 55:45 (v/v). Mass spectrometry was performed in the negative and positive ionization modes on a Thermo Fisher Q Exactive Orbitrap mass spectrometer equipped with an electrospray ionization interface. The established QSRR model was Ln(k') = 5.6163 + 0.0469ES - 0.0984XAH, with a determination coefficient (R2) of 0.9981, adjusted determination coefficient (adjR2) of 0.9976, and corrected root mean square error of 0.0682. The determination coefficient of the leave-one-out (LOO) cross-validation (Q2LOO) was 0.9976, and the cross-verification root mean square error was 0.0754. Simulated samples containing 7 flavonoids were used to validate the feasibility of the method. The classical method (UHPLC-MS/MS combined the CD software and the mzCloud, mzVault and Chemspider databases) was used to identify the seven flavonoids in the simulated samples. This classic identification strategy cannot provide accurate identification results, which provided multiple identification results for each compound in the simulated samples. On the basis of the results, the 7 flavonoids were accurately identified by the established QSRR model, and the reference standards were used to validate it. The relative error of retention time(RE(tR)) between the model calculation and experimental results was less than 10%. This method effectively complements and improves the classical methods, that UHPLC-MS/MS combined the CD software and the mass spectra databases were used to identify flavonoids identification.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Flavonoides , Cromatografia Líquida de Alta Pressão/métodos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...