Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 366, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743418

RESUMO

With the continuous in-depth study of the interaction mechanism between viruses and hosts, the virus has become a promising tool in cancer treatment. In fact, many oncolytic viruses with selectivity and effectiveness have been used in cancer therapy. Human enterovirus is one of the most convenient sources to generate oncolytic viruses, however, the high seroprevalence of some enteroviruses limits its application which urges to exploit more oncolytic enteroviruses. In this study, coxsackievirus B5/Faulkner (CV-B5/F) was screened for its potential oncolytic effect against non-small cell lung cancers (NSCLCs) through inducing apoptosis and autophagy. For refractory NSCLCs, DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia mutated protein (ATM) inhibitors can synergize with CV-B5/F to promote refractory cell death. Here, we showed that viral infection triggered endoplasmic reticulum (ER) stress-related pro-apoptosis and autophagy signals, whereas repair for double-stranded DNA breaks (DSBs) contributed to cell survival which can be antagonized by inhibitor-induced cell death, manifesting exacerbated DSBs, apoptosis, and autophagy. Mechanistically, PERK pathway was activated by the combination of CV-B5/F and inhibitor, and the irreversible ER stress-induced exacerbated cell death. Furthermore, the degradation of activated STING by ERphagy promoted viral replication. Meanwhile, no treatment-related deaths due to CV-B5/F and/or inhibitors occurred. Conclusively, our study identifies an oncolytic CV-B5/F and the synergistic effects of inhibitors of DNA-PK or ATM, which is a potential therapy for NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Vírus Oncolíticos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Estudos Soroepidemiológicos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Apoptose/genética , Vírus Oncolíticos/genética , DNA
2.
Viruses ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37243185

RESUMO

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Adjuvantes de Vacinas , SARS-CoV-2/genética , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Sistema ABO de Grupos Sanguíneos , Anticorpos Neutralizantes , Proteínas Recombinantes/genética , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
3.
Front Immunol ; 14: 1107639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865542

RESUMO

Neutralizing antibody (NtAb) levels are key indicators in the development and evaluation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. Establishing a unified and reliable WHO International Standard (IS) for NtAb is crucial for the calibration and harmonization of NtAb detection assays. National and other WHO secondary standards are key links in the transfer of IS to working standards but are often overlooked. The Chinese National Standard (NS) and WHO IS were developed by China and WHO in September and December 2020, respectively, the application of which prompted and coordinated sero-detection of vaccine and therapy globally. Currently, a second-generation Chinese NS is urgently required owing to the depletion of stocks and need for calibration to the WHO IS. The Chinese National Institutes for Food and Drug Control (NIFDC) developed two candidate NSs (samples 33 and 66-99) traced to the IS according to the WHO manual for the establishment of national secondary standards through a collaborative study of nine experienced labs. Either NS candidate can reduce the systematic error among different laboratories and the difference between the live virus neutralization (Neut) and pseudovirus neutralization (PsN) methods, ensuring the accuracy and comparability of NtAb test results among multiple labs and methods, especially for samples 66-99. At present, samples 66-99 have been approved as the second-generation NS, which is the first NS calibrated tracing to the IS with 580 (460-740) International Units (IU)/mL and 580 (520-640) IU/mL by Neut and PsN, respectively. The use of standards improves the reliability and comparability of NtAb detection, ensuring the continuity of the use of the IS unitage, which effectively promotes the development and application of SARS-CoV-2 vaccines in China.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Calibragem , Reprodutibilidade dos Testes , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , China , Organização Mundial da Saúde
4.
MedComm (2020) ; 3(4): e188, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474858

RESUMO

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.

5.
Viruses ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366549

RESUMO

Small molecular nucleic acid drugs produce antiviral effects by activating pattern recognition receptors (PRRs). In this study, a small molecular nucleotide containing 5'triphosphoric acid (5'PPP) and possessing a double-stranded structure was designed and named nCoV-L. nCoV-L was found to specifically activate RIG-I, induce interferon responses, and inhibit duplication of four RNA viruses (Human enterovirus 71, Human poliovirus 1, Human coxsackievirus B5 and Influenza A virus) in cells. In vivo, nCoV-L quickly induced interferon responses and protected BALB/c suckling mice from a lethal dose of the enterovirus 71. Additionally, prophylactic administration of nCoV-L was found to reduce mouse death and relieve morbidity symptoms in a K18-hACE2 mouse lethal model of SARS-CoV-2. In summary, these findings indicate that nCoV-L activates RIG-I and quickly induces effective antiviral signals. Thus, it has potential as a broad-spectrum antiviral drug.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , RNA Helicases DEAD-box/genética , RNA Viral/genética , Linhagem Celular , Proteína DEAD-box 58 , Camundongos Endogâmicos BALB C , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferons
6.
Front Immunol ; 13: 949248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059554

RESUMO

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Assuntos
Adenovirus dos Símios , COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunização , Macaca , Camundongos , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados
7.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146661

RESUMO

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Camundongos , Camundongos Endogâmicos BALB C , RNA , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tretinoína , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/genética
8.
Vaccine ; 40(14): 2233-2239, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35227521

RESUMO

A reference standard is needed for quality control of protein subunit SARS-CoV-2 vaccines to meet urgent domestic needs. The Chinese National Institutes for Food and Drug Control (NIFDC) launched a project to establish the first reference material for the protein subunit SARS-CoV-2 vaccine to be used for calibration of antigen testing. The potency and stability of the national candidate standard (CS) were determined by collaborative calibration, and accelerated and freeze-thaw degradation studies. Moreover, a suitability study of the CS was performed. Eight laboratories in mainland China were asked to detect antigen content of CS using a common validated enzyme-linked immunosorbent assay (ELISA) kit established by NIFDC and in-house kits in the collaborative study. Six laboratories returned valid results, which established that the antigen content of the CS was 876,938 YU/mL, with good agreement across laboratories. In the suitability study, the CS exhibited excellent parallelism and a linear relationship with four samples produced by different expression systems and target proteins. In addition, good stability in the accelerated and freeze-thaw degradation study was observed. In conclusion, the CS was approved by the Biological Product Reference Standards Sub-Committee of the National Drug Reference Standards Committee as the first Chinese national standard for determining antigen content of protein subunit SARS-CoV-2 vaccines, with an assigned antigen content of 877,000 U/mL (Lot. 300050-202101). This standard will contribute to a standardized assessment of protein subunit SARS-CoV-2 vaccine in China and may provide experience for developing reference materials for antigen content detection of SARS-CoV-2 vaccine in other countries.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Humanos , Subunidades Proteicas , Padrões de Referência , SARS-CoV-2
9.
Emerg Microbes Infect ; 11(1): 1145-1153, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35343384

RESUMO

Analysis of large-scale gene expression post vaccination can provide an overview of immune responses. We used transcriptional approaches to comprehensively analyze the innate immune response signatures elicited by protein subunit (PS) vaccine ZF2001 and an mRNA vaccine named RRV. A fine-grained time-dependent dissection of large-scale gene expression post immunization revealed that ZF001 induced MHC class II-related genes, including cd74 and H2-Aa, more expeditiously than the RRV. Notably, the RRV induced MHC class I-related genes such as Tap1/2, B2m, and H2-D1/K1. At day 21 post immunization, the titres of binding and neutralization antibody (NAb) induced by both vaccines were comparable, which were accordant with the expression level of genes essential to BCR/TCR signalling transduction and B/T cells activation at day 7. However, compared to ZF2001, the early responses of RRV were more robust, including the activation of pattern recognition receptors (PRRs), expression of genes involved in RNA degradation, and transcription inhibition, which are directly related to anti-viral signals. This pattern also coincided with the induction of cytokines by the RRV. Generally, the transcriptomic patterns of two very different vaccines mapped here provide a framework for establishing correlates between the induction of genes and protection, which can be tailored for evoking specific and potent immune responses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Imunidade Inata , Subunidades Proteicas/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Transcriptoma , Vacinação , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Vacinas de mRNA
11.
Hum Vaccin Immunother ; 17(12): 5334-5347, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34756160

RESUMO

Increased severity of diseases caused by Coxsackievirus A10 (CV-A10) as well as a large number of mutants and recombinants circulating in the population are a cause of concern for public health. A vaccine with broad-spectrum and homogenous protective capacity is needed to prevent outbreaks of CV-A10. Here, we evaluated cross-neutralization of prototype strain and 17 CV-A10 strains from related manufacturers in mainland China in vitro using 30 samples of plasma collected from naturally infected human adults and 18 sera samples from murine immunized with the above strains of CV-A10. Both human plasma and murine sera exhibited varying degrees of cross-neutralizing activities. Prototype A/Kowalik and sub-genotype C3/S113 were most difficult to neutralize. Among all strains tested, neutralization of S102 and S108 strains by 18 different sera was the most uniform, suggesting their suitability for detection of NtAb titers of different vaccines for avoiding biases introduced by detection strain. Furthermore, among all immune-sera, cross-neutralization of the 18 strains of CV-A10 by anti-S110 and anti-S102 was the most homogenous. Anti-S102 exhibiting higher geometric mean titer (GMT) in vitro was evaluated for its cross-protection capacity in vivo. Remarkably, administration of anti-S102 protected mice from lethal dosage of eight strains of CV-A10. These results provide a framework for formulating strategies for the R&D of vaccines targeting CV-A10 infections.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca , Piperidonas , Animais , Benzenoacetamidas , Camundongos , Vacinas de Produtos Inativados
12.
Emerg Microbes Infect ; 10(1): 1598-1608, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34278956

RESUMO

Since the outbreak of COVID-19, a variety of vaccine platforms have been developed. Amongst these, inactivated vaccines have been authorized for emergency use or conditional marketing in many countries. To further enhance the protective immune responses in populations that have completed vaccination regimen, we investigated the immunogenic characteristics of different vaccine platforms and tried homologous or heterologous boost strategy post two doses of inactivated vaccines in a mouse model. Our results showed that the humoral and cellular immune responses induced by different vaccines when administered individually differ significantly. In particular, inactivated vaccines showed relatively lower level of neutralizing antibody and T cell responses, but a higher IgG2a/IgG1 ratio compared with other vaccines. Boosting with either recombinant subunit, adenovirus vectored or mRNA vaccine after two-doses of inactivated vaccine further improved both neutralizing antibody and Spike-specific Th1-type T cell responses compared to boosting with a third dose of inactivated vaccine. Our results provide new ideas for prophylactic inoculation strategy of SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunização Secundária , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Produtos Inativados/administração & dosagem
13.
Signal Transduct Target Ther ; 6(1): 271, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267185

RESUMO

COVID-19 vaccines from multiple manufacturers are needed to cope with the problem of insufficient supply. We did two single-center, randomised, double-blind, placebo-controlled phase 1 and phase 2 trials to assess the safety, tolerability and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older in China. Eligible participants were enrolled, the ratio of candidate vaccine and placebo within each dose group was 3:1 (phase 1) or 5:1 (phase 2). From August 28, 2020, 168 participants were sequentially enrolled and randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 28 days or 0, 14, 28 days in phase 1 trial. From November 18, 2020, 960 participants were randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 21 days or 0, 14, 28 days in phase 2 trial. The most common solicited injection site adverse reaction within 7 days in both trials was pain. The most common solicited systematic adverse reactions within 7 days were fatigue, cough, sore throat, fever and headache. ELISA antibodies and neutralising antibodies increased at 14 days, and peaked at 28 days (phase 1) or 30 days (phase 2) after the last dose vaccination. The GMTs of neutralising antibody against live SARS-CoV-2 at 28 days or 30 days after the last dose vaccination were highest in the adult high dose group (0, 14, 28 days), with 102.9 (95% CI 61.9-171.2) and 102.6 (95% CI 75.2-140.1) in phase 1 and phase 2 trials, respectively. Specific T-cell response peaked at 14 days after the last dose vaccination in phase 1 trial. This vaccine is safe, and induced significant immune responses after three doses of vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Adolescente , Adulto , COVID-19/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Signal Transduct Target Ther ; 6(1): 199, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006829

RESUMO

The outbreak of COVID-19 has posed a huge threat to global health and economy. Countermeasures have revolutionized norms for working, socializing, learning, and travel. Importantly, vaccines have been considered as most effective tools to combat with COVID-19. As of the beginning of 2021, >200 COVID-19 vaccine candidates, covering nearly all existing technologies and platforms, are being research and development (R&D) by multiple manufacturers worldwide. This has posed a huge obstacle to the quality control and evaluation of those candidate vaccines, especially in China, where five vaccine platforms are deployed in parallel. To accelerate the R&D progress of COVID-19 vaccines, the guidances on R&D of COVID-19 vaccine have been issued by National Regulatory Authorities or organizations worldwide. The Center for Drug Evaluation and national quality control laboratory in China have played a leading role in launching the research on quality control and evaluation in collaboration with relevant laboratories involved in the vaccine R&D, which greatly supported the progression of vaccines R&D, and accelerated the approval for emergency use and conditional marketing of currently vaccine candidates. In this paper, the progress and experience gained in quality control and evaluation of COVID-19 vaccines developed in China are summarized, which might provide references for the R&D of current and next generation of COVID-19 vaccines worldwide.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Saúde Global , Humanos , Controle de Qualidade
15.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919184

RESUMO

Enterovirus A-71 (EV71) is a global, highly contagkkious pathogen responsible for severe cases of hand-food-mouth-disease (HFMD). The use of vaccines eliciting cross neutralizing antibodies (NTAbs) against the different circulating EV71 sub-genotypes is important for preventing HFMD outbreaks. Here, we tested the cross-neutralizing activities induced by EV71 genotype/sub-genotype A, B0-B4, C1, C2, C4, and C5 viruses using rats. Differences were noted in the cross-neutralization of the 10 sub-genotypes tested but there were generally good levels of cross-neutralization except against genotype A virus, against which neutralization antibody titres (NTAb) where the lowest with NTAbs being the highest against sub-genotype B4. Moreover, NTAb responses induced by C4, B4, C1, and C2 viruses were homogenous, with values of maximum/minimum NTAb ratios (MAX/MIN) against all B and C viruses ranging between 4.0 and 6.0, whereas MAX/MIN values against B3 and A viruses were highly variable, 48.0 and 256.0, respectively. We then dissected the cross-neutralizing ability of sera from infants and children and rats immunized with C4 EV71 vaccines. Cross-neutralizing titers against the 10 sub-genotypes were good in both vaccinated infants and children and rats with the MAX/MIN ranging from 1.8-3.4 and 5.1-7.1, respectively, which were similar to those found in naturally infected patients (2.8). Therefore, we conclude that C4 EV71 vaccines can provide global protection to infants and children against HFMD caused by different sub-genotypes.


Assuntos
Antígenos Virais/imunologia , Reações Cruzadas/imunologia , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Genótipo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Enterovirus/prevenção & controle , Humanos , Imunogenicidade da Vacina , Testes de Neutralização , Ratos , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia
16.
Hum Vaccin Immunother ; 17(2): 381-388, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750255

RESUMO

Coxsackievirus A16 (CV-A16), one of major etiological agents of hand, foot and mouth disease (HFMD), causes outbreaks of the disease in young children all over the world. In order to promote the prevention and control of HFMD, the research and development of CV-A16 vaccine have been carried out in China. However, due to lacking of a recognized CV-A16 antigen detection method, the evaluation and quality control (QC) of vaccine effectiveness are greatly limited. In this study, we established a quantitative enzyme-linked immunosorbent assay (Q-ELISA) to determine the antigen concentration in CV-A16 vaccines that can be applied in manufacturing in China. A neutralizing antibody 16E1 was used as a capture antibody that can bind to various CV-A16 antigens of different subgenotypes, and an antiserum from CV-A16-immunized rabbit conjugated by HRP was suitable for detecting and quantifying CV-A16 antigens. The Q-ELISA was validated for specificity, linearity, accuracy, precision and robustness by using the CV-A16 antigen national standard (NS). Furthermore, we utilized the Q-ELISA to quantify antigen contents of vaccine bulks from six manufacturers and other intermediate products from one manufacturer. The results indicated that the Q-ELISA can satisfy the requirements of QC for all manufacturers involved.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Vacinas , Animais , China , Ensaio de Imunoadsorção Enzimática , Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/prevenção & controle , Coelhos
17.
Hum Vaccin Immunother ; 16(6): 1434-1440, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31851566

RESUMO

Coxsackievirus A10 (CV-A10) has recently emerged as a major pathogen of hand, foot, and mouth disease in children worldwide. Currently no effective treatments are available; development of anti-CV-A10 vaccine is a most cost-effective way for CV-A10 prevention. Robust assay to measure neutralizing antibody (NtAb) titres elicited by vaccination would greatly prompt anti-CV-A10 vaccine development. Compare to the traditional neutralization assay based on inhibition of cytopathic effects (herein after referred to as cNT) which is time-consuming and labor-intensive, in this study we developed an efficient high-throughput neutralization antibody assay based on CV-A10 pseudoviruses (herein after referred to as pNT). In the pNT, anti-CV-A10 NtAb titre was negatively corresponded with the relative luminescent unit (RLU) produced by luciferase reporter gene incorporated in pseudovirus genome. As described in this study, the NtAb against CV-A10 could be detected within 10-16 h, anti- CV-A10 NtAb in 67 human serum samples were measured in parallel with pNT and cNT assays, a good correlation (r = 0.83,p < .0001) and good agreement(97%) were shown between cNT and pNT, indicating that the pNT provides a rapid and convenient procedure for measuring NtAb production against anti-CV-A10 NtAb measurement.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca , Anticorpos Neutralizantes , Benzenoacetamidas , Criança , Humanos , Piperidonas , Vacinação
18.
Hum Vaccin Immunother ; 15(10): 2343-2350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735461

RESUMO

Coxsackievirus A16 (CA16) has caused worldwide epidemics of hand, foot and mouth disease (HFMD), particularly in infants and pre-school children. Currently, there are no vaccines or antiviral drugs available for CA16-associated disease. In this study, a CA16-specific monoclonal antibody (MAb) NA11F12 was derived with an epidemic CA16 strain (GenBank no. JX127258). NA11F12 was found to have high cross-neutralization activity against different CA16 subgenotypes but not EV71 using RD cells. The neutralizing titers of NA11F12 ranged from 1:1024 to 1:12288 against A, B1, B2 and C subgenotypes of CA16 and was less than 8 against EV71 strain. In the neonatal mouse model, a single treatment of NA11F12 showed effective protection with a dose- and time-dependent relationship against lethal challenge by CA16 strain (GenBank no. JX481738). At day 1 post-infection, administering more than 0.1 µg/g of NA11F12 could protect 100% newborn mice from mobility and mortality challenged by CA16. With dose of 10 µg/g of NA11F12, a single administration fully protected mice against CA16-associated disease within 4 days post-infection. And there were 80% and 60% mice protected by administering NA11F12 at day 5 post-infection and day 6 post-infection when the control mice had shown clinical symptoms for 1- and 2-day, respectively. Immunohistochemical and histological analysis confirmed that NA11F12 significantly prohibited CA16 VP1 expression in various tissues and prevented CA16-induced necrosis. In conclusion, a CA16-specific MAb NA11F12 with high cross-neutralization activity was identified, which could effectively protect lethal CA16 challenge in mice. It could be a potential therapeutic MAb against CA16 in the future.


Assuntos
Anticorpos Antivirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/uso terapêutico , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Animais , Animais Recém-Nascidos , Doença de Mão, Pé e Boca/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Virais
19.
Emerg Microbes Infect ; 7(1): 185, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30459302

RESUMO

As one of the key members of the coxsackievirus B group, coxsackievirus B5 (CV-B5) can cause many central nervous system diseases, such as viral encephalitis, aseptic meningitis, and acute flaccid paralysis. Notably, epidemiological data indicate that outbreaks of CV-B5-associated central nervous system (CNS) diseases have been reported worldwide throughout history. In this study, which was conducted to promote CV-B5 vaccine and anti-virus drug research, a 3-day-old BALB/c mouse model was established using a CV-B5 clinical isolate (CV-B5/JS417) as the challenge strain. Mice challenged with CV-B5/JS417 exhibited a series of neural clinical symptoms and death with necrosis of neuronal cells in the cerebral cortex and the entire spinal cord, hindlimb muscles, and cardiomyocytes. The viral load of each tissue at various post-challenge time points suggested that CV-B5 replicated in the small intestine and was subsequently transmitted to various organs via viremia; the virus potentially entered the brain through the spinal axons, causing neuronal cell necrosis. In addition, this mouse model was used to evaluate the protective effect of a CV-B5 vaccine. The results indicated that both the inactivated CV-B5 vaccine and anti-CVB5 serum significantly protected mice from a lethal infection of CV-B5/JS417 by producing neutralizing antibodies. In summary, the first CV-B5 neonatal mouse model has been established and can sustain CNS infections in a manner similar to that observed in humans. This model will be a useful tool for studies on pathogenesis, vaccines, and anti-viral drug evaluations.


Assuntos
Anticorpos Neutralizantes/sangue , Infecções do Sistema Nervoso Central/virologia , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Animais , Animais Recém-Nascidos , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , Enterovirus Humano B , Feminino , Humanos , Intestino Delgado/virologia , Camundongos Endogâmicos BALB C , Neurônios/patologia , Neurônios/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Carga Viral , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...