Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0283728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709810

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) has been garnering ever-increasing worldwide attention as the herbal extracts and formulas prove to have potency against disease. Fuzhengjiedu San (FZJDS), has been extensively used to treat viral diseases in pigs, but its bioactive components and therapeutic mechanisms remain unclear. METHODS: In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the mechanisms underlying FZJDS's action in treating porcine reproductive and respiratory syndrome virus (PRRSV). We constructed PPI network and screened the core targets according to their degree of value. GO and KEGG enrichment analyses were also carried out to identify relevant pathways. Lastly, qRT-PCR, flow cytometry and western blotting were used to determine the effects of FZJDS on core gene expression in PRRSV-infected monkey kidney (MARC-145) cells to further expand the results of network pharmacological analysis. RESULTS: Network pharmacology data revealed that quercetin, kaempferol, and luteolin were the main active compounds of FZJDS. The phosphatidylinositol-3-kinase (PI3K)/Akt pathway was deemed the cellular target as it has been shown to participate most in PRRSV replication and other PRRSV-related functions. Analysis by qRT-PCR and western blotting demonstrated that FZJDS significantly reduced the expression of P65, JNK, TLR4, N protein, Bax and IĸBa in MARC-145 cells, and increased the expression of Bcl-2, consistent with network pharmacology results. This study provides that FZJDS has significant antiviral activity through its effects on the PI3K/AKT signaling pathway. CONCLUSION: We conclude that FZJDS is a promising candidate herbal formulation for treating PRRSV and deserves further investigation.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Quempferóis/farmacologia , Luteolina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Suínos , Replicação Viral/efeitos dos fármacos
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108405

RESUMO

Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1ß(IL-1ß), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.


Assuntos
Nanopartículas , Selênio , Humanos , Animais , Suínos , Selênio/farmacologia , Selênio/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Intestinos , Células Epiteliais/metabolismo , Nanopartículas/química , Claudinas/metabolismo , Apoptose
3.
Front Pharmacol ; 13: 968149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160439

RESUMO

The sesquiterpene lactone, artemisinin, is a primary component of the medicinal plant Artemisia annua L., which has anti-inflammatory, antibacterial and antioxidant activities. However, the potential effects of artemisinin on the mammary gland of dairy cows and the underlying molecular mechanisms remain unclear. Here, we utilized systematic network pharmacology and proteomics to elucidate the mechanism by which artemisinin affects milk production and the proliferation of bovine mammary epithelial cells (BMECs). Nineteen bioactive compounds and 56 key targets were identified through database mining. To delineate the mechanism of artemisia's activity, a protein-protein interaction network and integrated visual display were generated from bioinformatics assays to explore the relationships and interactions among the bioactive molecules and their targets. The gene ontology (GO) terms and kyoto encyclopedia of genes and genomes annotation suggested that the apoptotic process, cell division, p53 pathway, prolactin and PI3K-Akt pathways played vital roles in mammary gland development. Using proteomics analysis, we identified 122 up-regulated and 96 down-regulated differentially significant expressed proteins (DSEPs). The differentially significant expressed proteins had multiple biological functions associated with cell division, apoptosis, differentiation, and migration. Gene ontology enrichment analysis suggested that differentially significant expressed proteins may promote cell proliferation and regulate apoptosis in bovine mammary epithelial cells. Kyoto encyclopedia of genes and genomes pathway analysis indicated that several biological pathways, such as those involved in antigen processing and presentation, cell adhesion molecules and ribosomes, played significant roles in the effects of artemisinin on bovine mammary epithelial cells. These findings contribute to a comprehensive understanding of the mechanism by which artemisinin affects bovine mammary epithelial cells to improve mammary gland turnover by inducing cell proliferation and mammary gland development.

4.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146725

RESUMO

Our previous study has demonstrated that porcine pulmonary microvascular endothelial cells (MVECs) are susceptible to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). The innate immune response of MVECs infected with HP-PRRSV would play important roles in controlling virus proliferation, resisting cellular injury, and preventing the virus from spreading to other tissues and organs. Type I interferon is one of the most effective antiviral cytokines in the innate immune response, and interferon-induced proteins with tetratricopeptide repeats (IFITs) are members of interferon-stimulated genes induced by viruses and other pathogens, which are crucial in inhibiting virus proliferation and regulating the innate immune response. However, their effects on HP-PRRSV-induced innate immunity in porcine pulmonary MVECs remain unclear. Here, the roles of IFITs in porcine pulmonary MVECs infected with the HP-PRRSV HN strain were investigated, and the effects of astragalus polysaccharides (APS), a widely used traditional Chinese herbal ingredient with the immunopotentiating effect, on them were studied. The results showed that more autophagosomes were observed in HP-PRRSV-infected MVECs, and the expression of IFN-α, IFIT3, and IFIT5 decreased or increased at different time points after infection. When silencing the genes of IFIT3 or IFIT5, the HP-PRRSV replication in MVECs was significantly increased. The expression of IFIT3 and IFIT5 could be upregulated by APS, whose inhibitory effects on the HP-PRRSV replication significantly declined when the genes of IFIT3 or IFIT5 were silenced. The results suggest that IFIT3 and IFIT5 play an important role in inhibiting the HP-PRRSV replication in porcine pulmonary MVECs, and APS suppress the multiplication of HP-PRRSV by upregulating their expression.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Antivirais , Citocinas , Células Endoteliais , Imunidade Inata , Interferon-alfa , Suínos
5.
J Inflamm Res ; 15: 4331-4343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923910

RESUMO

Purpose: Streptococcus agalactiae is one of the primary pathogens responsible for subclinical mastitis, a significant economic burden for dairy farms. An essential component of the immune response to infection is ubiquitination, which plays important roles in the complex interactions between the pathogen and host. Materials and Methods: In the present study, quantitative ubiquitylomics was performed to profile changes in the global ubiquitinome of bovine mammary gland epithelial cells (BMECs) infected with S. agalactiae. Results: The most notable changes in the BMEC ubiquitinome were related to the adherens junction, ribosome, and tight junction pathways. Ubiquitination of CTNNB1, EGFR, ITGB1, CTNNA1, CTNNA2, CDH1, YES1, and SLC9A3R1 appears to be fundamental for regulating multiple cellular processes in BMECs in response to S. agalactiae infection. In addition, broad ubiquitination of various effectors and outer membrane proteins was observed. Ubiquitinated proteins in S. agalactiae-infected BMECs were associated with regulating cell junctions in the host, with potential implications for susceptibility to infection. Conclusion: The preliminary findings suggest that extensive ubiquitination of CTNNB1, CDH1 and SLC9A3R1 and proteins closely related to cell junctions might play an important role in mastitis progression in dairy cows. The results provide evidence that ubiquitin modification of certain proteins in S. agalactiae-infected BMECs could be a promising therapeutic strategy for reducing mammary gland injury and mastitis.

6.
Materials (Basel) ; 15(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888260

RESUMO

As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising contact material to replace AgCdO. However, it has deficiencies in machinability and electrical conductivity. The property of AgSnO2 contact material was improved by doping element Cr. The relationship between the mechanical and electrical properties of AgSnO2 contact materials and doping concentrations were investigated and analyzed by simulation and experiment. Based on the first principle, the elastic constants of supercell models Sn1-xCrxO2 (x = 0, 0.083, 0.125, 0.167, 0.25) were calculated. The results show that the material with a doping ratio of 25% is least prone to warp and crack, and the material with a doping ratio of 12.5% has the best toughness and ductility and the lowest hardness, which leads to molding and is subsequently easier to process. The Cr-doped AgSnO2 contacts with different doping proportions were prepared by the sol-gel and powder metallurgy method. Additionally, their physical performance and electrical contact properties were measured in experiments. The results show that the doped SnO2 powders prepared by the sol-gel method realize integration doping, which is consistent with the crystal model constructed in the simulation calculation. Sn0.875Cr0.125O2 has lower hardness, which is beneficial to process and form. Doping helps to stabilize the arc root, inhibit the ablation of contact by arc, reduces arc duration and arc energy, improves the resistance to arc erosion of AgSnO2 contact material, and makes electrical contact performance more stable. The contact material with a doping concentration of 16.7% has the best arc erosion resistance.

7.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683323

RESUMO

Ag/Ni contact material with greenery and good performance is a cadmium-free silver-based contact material that has been vigorously developed in recent years. However, Ag/Ni contact material has poor welding resistance. Based on the first principles of density functional theory, the interface model of Cu, C-doped Ag/Ni was established. The work of separation and interfacial energy of interface models showed that doping can improve the interfacial bonding strength and interfacial stability, with C-doped Ag/Ni having the strongest stability and interfacial bonding strength. It can be seen from the population and density of state that covalent bonds exist between Ag and Ni atoms of the Ag/Ni phase interface at the electronic structure level. Finally, the doped Ag/Ni contact material was prepared by the powder metallurgy method. Through the arc energy and welding force in the electrical contact experiment, it was obtained that the welding resistance of C-doped Ag/Ni was better than Cu-doped Ag/Ni contact material, which verified the correctness of the simulation results. Overall, the present study provides a theoretical method for the screening of doping elements to improve the performance of Ag/Ni contact material.

8.
Carbohydr Polym ; 278: 118910, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973731

RESUMO

Staphylococcus aureus (S. aureus) is the major pathogen responsible for mastitis in dairy cows, an important threat to their health, but prevention of S. aureus infection of the mammary gland remains challenging. Berberine hydrochloride (BH), a naturally occurring phytochemical, exhibits a wide range of activities, including antibacterial effects on S. aureus. In this study, we prepared a novel berberine hydrochloride-carboxymethyl chitosan hydrogel (BH-CMCH) with excellent thermosensitivity, injectability and in vitro antibacterial activity. In a rat model of mastitis induced by S. aureus, mammary duct injection of BH-CMCH reduced the bacterial load in infected mammary gland tissue and protected the tissue from damage from infection. In addition, proteomics analysis showed that mammary duct injection of BH-CMCH enhanced autolysosome degradation and promoted the innate immune response by activating the lysosomal pathway and up-regulating related significantly differentially expressed proteins (SDEPs). Taken together, the findings support the potential of BH-CMCH as an antibacterial agent against S. aureus-induced mastitis.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Quitosana/análogos & derivados , Hidrogéis/farmacologia , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Berberina/química , Quitosana/química , Quitosana/farmacologia , Feminino , Hidrogéis/síntese química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley
9.
Front Vet Sci ; 8: 677897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447800

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine-cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.

10.
BMC Vet Res ; 16(1): 265, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727484

RESUMO

BACKGROUND: Dysfunction of endothelial cells and vascular system is one of the most important pathological changes of porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2). PCV2-infected endothelial cells can upregulate the production of endothelial-derived IL-8, which can inhibit the maturation of dendritic cells. Endothelial-derived IL-8 has different structural and biological characteristics compared with monocyte-derived IL-8. However, the mechanism of endothelial-derived IL-8 production is still unclear. RESULTS: Key molecules of RIG-I-like signaling pathway RIG-I, MDA-5, MAVS and a key molecule of JNK signaling pathway c-Jun in PCV2-infected porcine iliac artery endothelial cells (PIECs) were upregulated significantly detected with quantitative PCR, Western blot and fluorescence confocal microscopy, while no significant changes were found in NF-κB signaling pathway. Meanwhile, the expression of endothelial-derived IL-8 was downregulated after RIG-I, MDA-5, or MAVS genes in PIECs were knocked down and PIECs were treated by JNK inhibitor. CONCLUSIONS: PCV2 can activate RIG-I/MDA-5/MAVS/JNK signaling pathway to induce the production of endothelial-derived IL-8 in PIECs, which provides an insight into the further study of endothelial dysfunction and vascular system disorder caused by PCV2.


Assuntos
Infecções por Circoviridae/veterinária , Células Endoteliais/virologia , Interleucina-8/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Infecções por Circoviridae/metabolismo , Circovirus/patogenicidade , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes/métodos , Técnicas de Silenciamento de Genes/veterinária , Artéria Ilíaca/metabolismo , Artéria Ilíaca/virologia , Interleucina-8/genética , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia
11.
Virol J ; 16(1): 154, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831027

RESUMO

BACKGROUND: Porcine circovirus (PCV) disease caused by PCV type 2 (PCV2) is mainly attributed to immunosuppression and immune damage. PCV2 can infect vascular endothelial cells and induce high expression of endothelial IL-8. Dendritic cells (DCs), as professional antigen-presenting cells, can not only present antigens but also activate naïve T-cells, causing an immune response. METHODS: To demonstrate whether endothelial IL-8 is the main factor inhibiting the maturation and related functions of dendritic cells during PCV2 infection, monocyte-derived DCs (MoDCs) and porcine iliac artery endothelial cells (PIECs) processed by different methods were co-cultured in two ways. Flow cytometry, molecular probe labeling, fluorescence quantitative PCR, and the MTS assay were used to detect the changes in related functions and molecules of MoDCs. RESULTS: Compared to those in the PIEC-DC group, the endothelial IL-8 upregulation co-culture group showed significantly lower double-positive rates for CD80/86 and MHC-II of MoDCs and significantly increased endocytosis of MoDCs. Meanwhile, the adhesion rate and average fluorescence intensity of MoDCs were significantly downregulated in migration and adhesion experiments. Furthermore, the MHC-I and LAMP7 mRNA levels in MoDCs and the proliferation of MoDC-stimulated T-cells were markedly reduced. However, the changes in MoDCs of the endothelial IL-8 downregulation co-culture group were the opposite. CONCLUSIONS: PCV2-induced endothelial IL-8 reduces the adhesion and migration ability of MoDCs, resulting in a decreased maturation rate of MoDCs, and further inhibits antigen presentation by DCs. These results may explain the immunosuppressive mechanism of PCV2 from the perspective of the interaction between endothelial cells and DCs in vitro.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Diferenciação Celular , Circovirus/imunologia , Células Dendríticas/imunologia , Células Endoteliais/virologia , Fatores Imunológicos/metabolismo , Interleucina-8/metabolismo , Animais , Células Apresentadoras de Antígenos/fisiologia , Células Cultivadas , Circovirus/crescimento & desenvolvimento , Técnicas de Cocultura , Células Dendríticas/fisiologia , Células Endoteliais/metabolismo , Suínos
12.
Arch Virol ; 163(5): 1231-1239, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29397454

RESUMO

The efficiency of immune responses and host defense against pathogens largely depends on the function of dendritic cells (DCs). Porcine circovirus type 2 (PCV2) infection causes viremia and extensive modulation of immune activities in the blood. The objective of the present study was to investigate the effects of PCV2 infection in vivo on the immunological function of DCs induced from peripheral blood monocytes (MoDCs). At different points after infection with PCV2, peripheral blood monocytes from PCV2-infected pigs were used to induce differentiation of DCs in vitro. Flow cytometry and quantitative real-time reverse transcription PCR were conducted to detect mRNA expression of surface markers related to antigen presentation and inflammatory/immunosuppressive cytokines of the induced MoDCs. The ability of induced MoDCs to stimulate T cells was measured using an MTS assay. In the early phase of infection at 3 days post-inoculation (DPI), IL-10, IL-8 and MIP-1ß in MoDCs were upregulated significantly. By the peak of virus proliferation at 7 DPI, antigen presentation molecules SLA-DR (MHC II) and CD80/86 together with cytokines IL-12 and IL-10 had decreased, accompanied by a rapid reduction of IL-8 and MIP-1ß. The T cell stimulation index of induced MoDCs in PCV2 groups after different infection times declined to some extent, with a significant difference at 7 DPI. PCV2 infection in vivo functionally reduced the antigen presentation capability of induced MoDCs from peripheral blood and modified expression of inflammatory/immunosuppressive cytokines that may be related to PCV2-induced immunosuppression.


Assuntos
Apresentação de Antígeno , Infecções por Circoviridae/imunologia , Circovirus/imunologia , Citocinas/genética , Células Dendríticas/imunologia , Animais , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Citocinas/imunologia , Inflamação , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Ativação Linfocitária , Monócitos/imunologia , Monócitos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Linfócitos T/imunologia , Regulação para Cima , Carga Viral
13.
Arch Virol ; 157(11): 2189-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22828777

RESUMO

Infectious bursa disease virus causes an acute infection in bursal B cells. The Toll-like receptor (TLR) signaling pathway plays a key role in innate immunity during virus infection. In this study, an Agilent microarray was used to investigate different transcriptional profiles of the TLR pathway and related genes of chicken bursa at 48 h after infection with IBDV, compared with simulated infection. Expression of >58 genes changed significantly. Forty-six genes associated with chicken bursa proinflammatory effects, chemotactic effects, and T-cell stimulation were upregulated, which meant enhancement of these features. Twelve genes that are related to proliferation and differentiation of bursal cells were downregulated, implying suppression of these features. These results revealed that genes of the TLR pathway play an important role in the pathogenicity of IBDV infection. The findings are helpful for understanding the molecular basis of viral pathogenesis and the underlying mechanism of the host antiviral response.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/patogenicidade , Transdução de Sinais , Receptores Toll-Like/biossíntese , Animais , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/virologia , Galinhas , Masculino , Análise em Microsséries , Fatores de Tempo
14.
Biochem Genet ; 50(9-10): 702-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22570094

RESUMO

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, thus playing important roles in host defense. This study determined the first sequence of a TLR1 type 1 in the guinea fowl (GFTLR1). The open reading frame of GFTLR1 type 1 contains 2,115 nucleotides and encodes 705 amino acids. Amino acid analysis indicated that GFTLR1 type 1 shares 92.3 % homology with the green jungle fowl, 92.1 % with the chicken, 90.4 % with the turkey, and 84.4 % with Cooper's hawk. Genetic patterns were identified within the TLR1 type 1 of the chicken and the guinea fowl. GFTLR1 type 1 was found to have 92 polymorphic amino acid sites, of which 16 were in the leucine-rich repeat (LRR) domain, 3 in a C-terminal LRR domain, and 6 in a Toll/interleukin-1 receptor domain. The data showed that avian TLR1 type 1 genes are under purifying selection and highly conserved, because dN/dS was less than 1.


Assuntos
Proteínas Aviárias/genética , Galliformes/genética , Polimorfismo Genético , Receptor 1 Toll-Like/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas de Repetições Ricas em Leucina , Fases de Leitura Aberta , Filogenia , Estrutura Terciária de Proteína , Proteínas/genética , Receptores de Interleucina-1/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...