Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Build Environ ; 171: 106673, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287993

RESUMO

Interunit dispersion problems have been studied previously mainly through on-site measurements, wind tunnel tests, and CFD simulations. In this study, a scaled outdoor experiment was conducted to examine the interunit dispersion characteristics in consecutive two-dimensional street canyons. Tracer gas ( C O 2 ) was continuously released to simulate the pollutant dispersion routes between the rooms in street canyons. The wind velocity, wind direction, air temperature, and tracer gas concentrations were monitored simultaneously. Two important parameters, the air exchange rate and reentry ratio, were analyzed to reveal the ventilation performance and interunit dispersion of the rooms in the street canyons. Based on the real-time weather conditions, it was found that the ventilation performance of the source room varied according to the room location. The air exchange rate distribution of the leeward-side room was more stable than that of the windward side. The tracer gas was mainly transported in the vortex direction inside the street canyon, and the highest reentry ratio was observed at the room nearest to the source room along the transportation route. In addition, under real weather conditions, the rooms in the street canyon have a high probability of experiencing a high reentry ratio based on the maximum reentry ratio of each room. This study provides authentic airflow and pollutant dispersion information in the street canyons in an urban environment. The dataset of this experiment can be used to validate further numerical simulations.

2.
Build Simul ; 11(6): 1245-1253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32218905

RESUMO

This study examines the influence of building envelope features on interunit dispersion around multi-story buildings, when the presence of an upstream interfering building is also considered. Validated CFD methods in the steady-state RANS framework are employed. In general, the reentry ratios of pollutant from a source unit to adjacent units are mostly in the order of 0.1%, but there are still many cases being in the order of 1%. The influence of envelope features is dependent strongly on the interaction between local wind direction and envelope feature. In a downward dominated near-facade flow field, the presence of vertical envelope features forms dispersion channels to intensify the unidirectional spread. Horizontal envelope features help induce the dilution of pollutant to the main stream and weakens largely the vertical interunit dispersion. The large influences caused by the presence of envelope features extend the existing understanding of interunit dispersion based on flat-facade buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...