Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(2): 173-182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216751

RESUMO

Even in the genomic era, microbial natural product discovery workflows can be laborious and limited in their ability to target molecules with specific structural features. Here we leverage an understanding of biosynthesis to develop a workflow that targets the discovery of alkyl halide-derived natural products by depleting halide anions, a key biosynthetic substrate for enzymatic halogenation, from microbial growth media. By comparing the metabolomes of bacterial cultures grown in halide-replete and deficient media, we rapidly discovered the nostochlorosides, the products of an orphan halogenase-encoding gene cluster from Nostoc punctiforme ATCC 29133. We further found that these products, a family of unusual chlorinated glycolipids featuring the rare sugar gulose, are polymerized via an unprecedented enzymatic etherification reaction. Together, our results highlight the power of leveraging an understanding of biosynthetic logic to streamline natural product discovery.


Assuntos
Produtos Biológicos , Halogenação
2.
Plant J ; 117(4): 1084-1098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934816

RESUMO

Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilanos/metabolismo , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Mananas/metabolismo , Acetilação , Birrefringência , Tricomas/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Parede Celular/metabolismo
3.
J Am Chem Soc ; 145(16): 9304-9312, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043219

RESUMO

Atomically precise metal nanoclusters (NCs) are an intriguing class of crystalline solids with unique physicochemical properties derived from tunable structures and compositions. Most atomically precise NCs require closed-shells and coordinatively saturated surface metals in order to be stable. Herein, we report Au43(C≡CtBu)20 and Au42Ag1(C≡CtBu)20, which feature open electronic and geometric shells, leading to both paramagnetism (23 valence e-) and enhanced catalytic activity from a single coordinatively unsaturated surface metal. The Au-alkynyl surface motifs of these NCs form five helical stripes around the inner Au12 kernel, imparting chirality and high thermal stability. Density functional theory (DFT) calculations suggest that there are minimal energy differences between the open-shelled NCs and hypothetical closed-shell systems and that the open-shelled electronic configuration gives rise to the largest band gap, which is known to promote cluster stability. Furthermore, we highlight how coordinatively unsaturated surface metals create active sites for the catalytic oxidation of benzyl alcohol to benzaldehyde, leading to high selectivity and increased conversion. This work represents the first example of an atomically precise Au NC with a double open-shelled structure and provides a promising platform for investigating the magnetic and catalytic properties of noble metal nanoparticles.

4.
Plant J ; 112(1): 193-206, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35959609

RESUMO

Grass xylan, the major hemicellulose in both primary and secondary cell walls, is heavily decorated with α-1,3-linked arabinofuranosyl (Araf) residues that may be further substituted at O-2 with xylosyl (Xyl) or Araf residues. Although xylan 3-O-arabinosyltransferases (XATs) catalyzing 3-O-Araf addition onto xylan have been characterized, glycosyltransferases responsible for the transfer of 2-O-Xyl or 2-O-Araf onto 3-O-Araf residues of xylan to produce the Xyl-Araf and Araf-Araf disaccharide side chains remain to be identified. In this report, we showed that a rice GT61 member, named OsXAXT1 (xylan arabinosyl 2-O-xylosyltransferase 1) herein, was able to mediate the addition of Xyl-Araf disaccharide side chains onto xylan when heterologously co-expressed with OsXAT2 in the Arabidopsis gux1/2/3 (glucuronic acid substitution of xylan 1/2/3) triple mutant that lacks any glycosyl substitutions. Recombinant OsXAXT1 protein expressed in human embryonic kidney 293 cells exhibited a xylosyltransferase activity catalyzing the addition of Xyl from UDP-Xyl onto arabinosylated xylooligomers. Consistent with its function as a xylan arabinosyl 2-O-xylosyltransferase, CRISPR-Cas9-mediated mutations of the OsXAXT1 gene in transgenic rice plants resulted in a reduction in the level of Xyl-Araf disaccharide side chains in xylan. Furthermore, we revealed that XAXT1 close homologs from several other grass species, including switchgrass, maize, and Brachypodium, possessed the same functions as OsXAXT1, indicating functional conservation of XAXTs in grass species. Together, our findings establish that grass XAXTs are xylosyltransferases catalyzing Xyl transfer onto O-2 of Araf residues of xylan to form the Xyl-Araf disaccharide side chains, which furthers our understanding of genes involved in xylan biosynthesis.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo , Ácido Glucurônico/análise , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Glicosiltransferases/metabolismo , Humanos , Oryza/genética , Oryza/metabolismo , Pentosiltransferases , Plantas Geneticamente Modificadas/metabolismo , Difosfato de Uridina/metabolismo , Xilanos/metabolismo , UDP Xilose-Proteína Xilosiltransferase
5.
Planta ; 254(6): 131, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821996

RESUMO

MAIN CONCLUSION: Multiple rice GT61 members were demonstrated to be xylan arabinosyltransferases (XATs) mediating 3-O-arabinosylation of xylan and the functions of XATs and xylan 2-O-xylosyltransferases were shown to be conserved in grass species. Xylan is the major hemicellulose in the cell walls of grass species and it is typified by having arabinofuranosyl (Araf) substitutions. In this report, we demonstrated that four previously uncharacterized, Golgi-localized glycosyltransferases residing in clade A or B of the rice GT61 family were able to mediate 3-O-arabinosylation of xylan when heterologously expressed in the Arabidopsis gux1/2/3 triple mutant. Biochemical characterization of their recombinant proteins established that they were xylan arabinosyltransferases (XATs) capable of transferring Araf residues onto xylohexaose acceptors, and thus they were named OsXAT4, OsXAT5, OsXAT6 and OsXAT7. OsXAT5 and the previously identified OsXAT2 were shown to be able to arabinosylate xylooligomers with a degree of polymerization of as low as 3. Furthermore, a number of XAT homologs from maize, sorghum, Brachypodium and switchgrass were found to exhibit activities catalyzing Araf transfer onto xylohexaose, indicating that they are XATs involved in xylan arabinosylation in these grass species. Moreover, we revealed that homologs of another GT61 member, xylan 2-O-xylosyltransferase (XYXT1), from these grass species could mediate 2-O-xylosylation of xylan when expressed in the Arabidopsis gux1/2/3 mutant. Together, our findings indicate that multiple OsXATs are involved in 3-O-arabinosylation of xylan and the functions of XATs and XYXTs are conserved in grass species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Parede Celular , Glicosiltransferases/genética , Xilanos
6.
J Am Chem Soc ; 142(41): 17301-17305, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32985175

RESUMO

Reaction of the lithium dithiolene radical 2• with the imidazolium salt [{(Me)CN(i-Pr)}2CH]+[Cl]- (in a 1:1 molar ratio) gives the first stable naked anionic dithiolene radical 3•, which, when coupled with hexasulfide, [{(Me)CN(i-Pr)}2CH]+2[S6]2- (4), and N-heterocyclic silylene 5, unexpectedly results in synergic THF ring-opening via a radical mechanism.


Assuntos
Compostos Heterocíclicos/química , Imidazóis/química , Compostos de Sulfidrila/química , Sulfetos/química , Ânions/química , Radicais Livres/química , Furanos/química , Modelos Moleculares , Estrutura Molecular , Solventes/química
7.
Plant Cell Physiol ; 61(6): 1064-1079, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167545

RESUMO

Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/enzimologia , Brachypodium/genética , Catálise , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Oligossacarídeos/metabolismo , Oryza/enzimologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
8.
Plant Cell Physiol ; 61(1): 64-75, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503286

RESUMO

Plant cell wall polysaccharides, including xylan, glucomannan, xyloglucan and pectin, are often acetylated. Although a number of acetyltransferases responsible for the acetylation of some of these polysaccharides have been biochemically characterized, little is known about the source of acetyl donors and how acetyl donors are translocated into the Golgi, where these polysaccharides are synthesized. In this report, we investigated roles of ATP-citrate lyase (ACL) that generates cytosolic acetyl-CoA in cell wall polysaccharide acetylation and effects of simultaneous mutations of four Reduced Wall Acetylation (RWA) genes on acetyl-CoA transport into the Golgi in Arabidopsis thaliana. Expression analyses of genes involved in the generation of acetyl-CoA in different subcellular compartments showed that the expression of several ACL genes responsible for cytosolic acetyl-CoA synthesis was elevated in interfascicular fiber cells and induced by secondary wall-associated transcriptional activators. Simultaneous downregulation of the expression of ACL genes was demonstrated to result in a substantial decrease in the degree of xylan acetylation and a severe alteration in secondary wall structure in xylem vessels. In addition, the degree of acetylation of other cell wall polysaccharides, including glucomannan, xyloglucan and pectin, was also reduced. Moreover, Golgi-enriched membrane vesicles isolated from the rwa1/2/3/4 quadruple mutant were found to exhibit a drastic reduction in acetyl-CoA transport activity compared with the wild type. These findings indicate that cytosolic acetyl-CoA generated by ACL is essential for cell wall polysaccharide acetylation and RWAs are required for its transport from the cytosol into the Golgi.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Parede Celular/metabolismo , Citosol/metabolismo , Complexos Multienzimáticos/metabolismo , Oxo-Ácido-Liases/metabolismo , Polissacarídeos/metabolismo , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/genética , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catárticos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos , Complexo de Golgi/metabolismo , Mananas , Pectinas/metabolismo , Xilanos , Xilema/metabolismo
9.
New Phytol ; 224(1): 466-479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183872

RESUMO

Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Embriófitas/enzimologia , Embriófitas/genética , Evolução Molecular , Mananas/metabolismo , Acetilação , Biocatálise , Genes de Plantas , Células HEK293 , Humanos , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/biossíntese
10.
New Phytol ; 221(4): 1703-1723, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30312479

RESUMO

Contents Summary 1703 I. Introduction 1703 II. Cellulose biosynthesis 1705 III. Xylan biosynthesis 1709 IV. Glucomannan biosynthesis 1713 V. Lignin biosynthesis 1714 VI. Concluding remarks 1717 Acknowledgements 1717 References 1717 SUMMARY: Secondary walls are synthesized in specialized cells, such as tracheary elements and fibers, and their remarkable strength and rigidity provide strong mechanical support to the cells and the plant body. The main components of secondary walls are cellulose, xylan, glucomannan and lignin. Biochemical, molecular and genetic studies have led to the discovery of most of the genes involved in the biosynthesis of secondary wall components. Cellulose is synthesized by cellulose synthase complexes in the plasma membrane and the recent success of in vitro synthesis of cellulose microfibrils by a single recombinant cellulose synthase isoform reconstituted into proteoliposomes opens new doors to further investigate the structure and functions of cellulose synthase complexes. Most genes involved in the glycosyl backbone synthesis, glycosyl substitutions and acetylation of xylan and glucomannan have been genetically characterized and the biochemical properties of some of their encoded enzymes have been investigated. The genes and their encoded enzymes participating in monolignol biosynthesis and modification have been extensively studied both genetically and biochemically. A full understanding of how secondary wall components are synthesized will ultimately enable us to produce plants with custom-designed secondary wall composition tailored to diverse applications.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Células Vegetais/metabolismo , Celulose/química , Glucosiltransferases/metabolismo , Lignina/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Xilanos/química , Xilanos/metabolismo
11.
Plant Cell Physiol ; 59(11): 2339-2349, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102392

RESUMO

Mannans are hemicellulosic polysaccharides commonly found in the primary and secondary cell walls of land plants, and their mannosyl residues are often acetylated at O-2 and O-3. Currently, little is known about the genes responsible for the acetylation of mannans. In this report, we investigated the roles of a subgroup of DUF231 proteins including 11 from Arabidopsis thaliana and one from Amorphophallus konjac in mannan acetylation. Acetyltransferase activity assays of their recombinant proteins revealed that four Arabidopsis DUF231 proteins possessed an enzymatic activity capable of transferring acetyl groups from acetyl-CoA onto the mannohexaose acceptor, and thus were named mannan O-acetyltransferases (MOAT1, MOAT2, MOAT3 and MOAT4). Their close homolog from A. konjac (named AkMOAT1) also exhibited mannan O-acetyltransferase activity. Structural analysis of the MOAT-catalyzed reaction products demonstrated that these MOATs catalyzed 2-O- and 3-O-monoacetylation of mannosyl residues, an acetyl substitution pattern similar to that of Arabidopsis glucomannan. Site-directed mutagenesis showed that mutations of the conserved residues in the GDS and DXXH motifs of MOAT3 abolished its acetyltransferase activity, indicating the essential roles of these motifs in its activity. In addition, simultaneous RNA interference (RNAi) inhibition of the expression of the four Arabidopsis MOAT genes led to a drastic reduction in the degree of acetyl substitutions in glucomannan, further corroborating their role in glucomannan acetylation. Together, these results present the first lines of biochemical and genetic evidence demonstrating that these four Arabidopsis DUF231 members and their close A. konjac homolog are mannan O-acetyltransferases.


Assuntos
Acetiltransferases/metabolismo , Mananas/metabolismo , Acetilação , Acetiltransferases/genética , Amorphophallus/enzimologia , Amorphophallus/genética , Amorphophallus/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catálise , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Planta ; 248(5): 1159-1171, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30083810

RESUMO

MAIN CONCLUSION: AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactose/metabolismo , Glucanos/metabolismo , Proteínas de Membrana/metabolismo , Populus/enzimologia , Xilanos/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Filogenia , Populus/metabolismo , Proteínas Recombinantes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Angew Chem Int Ed Engl ; 57(26): 7865-7868, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29756257

RESUMO

Whereas low-temperature (-78 °C) reaction of the lithium dithiolene radical 1. with boron bromide gives the dibromoboron dithiolene radical 2. , the parallel reaction of 1. with (C6 H11 )2 BCl (0 °C) affords the dicyclohexylboron dithiolene radical 3. . Radicals 2. and 3. were characterized by single-crystal X-ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions, 3. undergoes unexpected thiourea-mediated B-C bond activation to give zwitterion 4, which may be regarded as an anionic dithiolene-modified carbene complex of the sulfenyl cation RS+ (R=cyclohexyl).

14.
PLoS One ; 13(4): e0194532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617384

RESUMO

Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.


Assuntos
Proteínas de Plantas/fisiologia , Populus/enzimologia , Xilanos/metabolismo , Acetilação , Acetiltransferases , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ressonância Magnética Nuclear Biomolecular , Filogenia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Madeira/química , Madeira/metabolismo , Xilanos/química
15.
Planta ; 247(6): 1489-1498, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29569182

RESUMO

MAIN CONCLUSION: Rice xylan is predominantly monoacetylated at O-2 and O-3, and 14 rice DUF231 proteins were demonstrated to be xylan acetyltransferases. Acetylated xylans are the principal hemicellulose in the cell walls of grass species. Because xylan acetylation impedes the conversion of cellulosic biomass into biofuels, knowledge on acetyltransferases catalyzing xylan acetylation in grass species will be instrumental for a better utilization of grass biomass for biofuel production. Xylan in rice (Oryza sativa) is predominantly monoacetylated at O-2 and O-3 with a total degree of acetylation of 0.19. In this report, we have characterized 14 rice DUF231 proteins (OsXOAT1 to OsXOAT14) that are phylogenetically grouped together with Arabidopsis xylan acetyltransferases ESK1 and its close homologs. Complementation analysis demonstrated that the expression of OsXOAT1 to OsXOAT7 in the Arabidopsis esk1 mutant was able to rescue its defects in 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation. Activity assay of recombinant proteins revealed that all 14 OsXOATs exhibited acetyltransferase activities capable of transferring acetyl groups from acetyl-CoA to the xylohexaose acceptor with 10 of them having high activities. Structural analysis of the OsXOAT-catalyzed products showed that the acetylated structural units consisted mainly of 2-O- and 3-O-monoacetylated xylosyl residues with a minor amount of 2,3-di-O-acetylated xylosyl units, which is consistent with the acetyl substitution pattern of rice xylan. Further kinetic studies revealed that OsXOAT1, OsXOAT2, OsXOAT5, OsXOAT6 and OsXOAT7 had high affinity toward the xylohexaose acceptor. Our results provide biochemical evidence indicating that OsXOATs are acetyltransferases involved in xylan acetylation in rice.


Assuntos
Acetiltransferases/metabolismo , Oryza/enzimologia , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cinética , Mutação , Oryza/genética
16.
Plant Cell Physiol ; 59(3): 554-565, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325159

RESUMO

Xylan is a major hemicellulose in both primary and secondary walls of grass species. It consists of a linear backbone of ß-1,4-linked xylosyl residues that are often substituted with monosaccharides and disaccharides. Xylosyl substitutions directly on the xylan backbone have not been reported in grass species, and genes responsible for xylan substitutions in grass species have not been well elucidated. Here, we report functional characterization of a rice (Oryza sativa) GT61 glycosyltransferase, XYXT1 (xylan xylosyltransferase1), for its role in xylan substitutions. XYXT1 was found to be ubiquitously expressed in different rice organs and its encoded protein was targeted to the Golgi, the site for xylan biosynthesis. When expressed in the Arabidopsis gux1/2/3 triple mutant, in which xylan was completely devoid of sugar substitutions, XYXT1 was able to add xylosyl side chains onto xylan. Glycosyl linkage analysis and comprehensive structural characterization of xylooligomers generated by xylanase digestion of xylan from transgenic Arabidopsis plants expressing XYXT1 revealed that the side chain xylosyl residues were directly attached to the xylan backbone at O-2, a substituent not present in wild-type Arabidopsis xylan. XYXT1 was unable to add xylosyl residues onto the arabinosyl side chains of xylan when it was co-expressed with OsXAT2 (Oryza sativa xylan arabinosyltransferase2) in the gux1/2/3 triple mutant. Furthermore, we showed that recombinant XYXT1 possessed an activity transferring xylosyl side chains onto xylooligomer acceptors, whereas recombinant OsXAT2 catalyzed the addition of arabinosyl side chains onto xylooligomer acceptors. Our findings from both an in vivo gain-of-function study and an in vitro recombinant protein activity assay demonstrate that XYXT1 is a novel ß-1,2-xylosyltransferase mediating the addition of xylosyl side chains onto xylan.


Assuntos
Oryza/enzimologia , Pentosiltransferases/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Arabidopsis/genética , Biocatálise , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Pentosiltransferases/química , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/metabolismo , UDP Xilose-Proteína Xilosiltransferase
17.
Dalton Trans ; 47(1): 41-44, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29168513

RESUMO

Reaction of 2-bromo-1,3,2-diazaborole (1) with excess BBr3 induces 1,2-hydrogen migration, giving 1,3,2-diazaborole-derived carbene complexes of boron bromide (2). Compound 2 exists in a dynamic solution equilibrium with 1. The 1H NMR study shows that the equilibrium lies to the right side of the dissociation reaction of 2. Parallel reaction of 1 with excess BI3 gives the corresponding 1,3,2-diazaborole-derived carbene boron iodide complex (3). Notably, in contrast to 2, the dissociation reaction of 3 largely lies to the left side, favouring the formation of 3. The dynamic solution equilibrium behaviours of 2 and 3 are probed by both experimental and theoretical methods.

18.
Plant Cell Physiol ; 58(12): 2126-2138, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059346

RESUMO

Xylan is a major hemicellulose in the secondary walls of vessels and fibers, and its acetylation is essential for normal secondary wall assembly and properties. The acetylation of xylan can occur at multiple positions of its backbone xylosyl residues, including 2-O-monoacetylation, 3-O-monoacetylation, 2,3-di-O-acetylation and 3-O-acetylation of 2-O-glucuronic acid (GlcA)-substituted xylosyl residues, but the biochemical mechanism controlling the regiospecific acetylation of xylan is largely unknown. Here, we present biochemical characterization of a group of Arabidopsis thaliana DUF231-containing proteins, namely TBL28, ESK1/TBL29, TBL30, TBL3, TBL31, TBL32, TBL33, TBL34 and TBL35, for their roles in catalyzing the regiospecific acetylation of xylan. Acetyltransferase activity assay of recombinant proteins demonstrated that all of these proteins possessed xylan acetyltransferase activities catalyzing the transfer of acetyl groups from acetyl-CoA onto xylooligomer acceptors albeit with differential specificities. Structural analysis of their reaction products revealed that TBL28, ESK1, TBL3, TBL31 and TBL34 catalyzed xylan 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation with differential positional preference, TBL30 carried out 2-O- and 3-O-monoacetylation, TBL35 catalyzed 2,3-di-O-acetylation, and TBL32 and TBL33 mediated 3-O-acetylation of 2-O-GlcA-substituted xylosyl residues. Furthermore, mutations of the conserved GDS and DXXH motifs in ESK1 were found to result in a complete loss of its acetyltransferase activity. Together, these results establish that these nine DUF231-containing proteins are xylan acetyltransferases mediating the regiospecific acetylation of xylan and that the conserved GDS and DXXH motifs are critical for their acetyltransferase activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Plantas Geneticamente Modificadas , Xilanos/química
19.
PLoS One ; 11(10): e0162821, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760157

RESUMO

Both tyrosine kinase and topoisomerase II (TopII) are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK) detection kit using a horseradish peroxidase (HRP)-conjugated phosphotyrosine (pY20) antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 µmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 µM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05), and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 µmol/L in Capan-1 cells and 3.1±0.86 µmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose- and time-dependent manner in different cellular contexts. Compared with the control group, HMNE3 induced increased expression of cellular apoptosis-related proteins. Consistent with cellular apoptosis data, a significant decrease in topoisomerase IIß activity was noted following treatment with HMNE3 for 24 h. Our data suggest that HMNE3 induced apoptosis in Capan-1 and Panc-1 cells by inhibiting the activity of both tyrosine kinases and topoisomerase II.


Assuntos
Chalcona/química , Ciprofloxacina/análogos & derivados , DNA Topoisomerases Tipo II/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciprofloxacina/química , Humanos
20.
Chem Commun (Camb) ; 52(33): 5746-8, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27046462

RESUMO

Reaction of carbene-stabilized diphosphorus, L:P-P:L (5) (L: = :C{N(2,6-Pr(i)2C6H3)CH}2) with pyridine hydrochloride yields [L:(H)P-P:L]Cl (6), a salt containing the HP2(+) cation--the elusive phosphorus analogue of the well known diazonium cation, HN2(+). In addition to reporting the synthesis and structure, the nature of (6) was further probed by DFT computations. Interestingly, carbenes may be employed to deprotonate (6), affording the starting material (5).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...