Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403867, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773950

RESUMO

Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.

2.
Biomech Model Mechanobiol ; 23(1): 227-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831284

RESUMO

The frequency characteristics of lung sounds have great significance for noninvasive diagnosis of respiratory diseases. The rales in the lower respiratory tract region that can provide rich information about symptoms of respiratory diseases are not clear. In this paper, a three-dimensional idealized bifurcated lower respiratory tract geometric model, which contains 3rd to 13th generation (G3-G13) bronchi is constructed, where Re ∼ 10 1 - 10 3 , and then the large eddy simulation and volume of fluid are used to study the fluid flow characteristics. Ffowcs Williams and Hawkings model are subsequently used to study the frequency characteristics of rale of different generations of bronchi. The results showed that bronchial blockage and sputum movement will enhance the turbulence intensity and vortex shedding intensity of flow. The dominant frequency and highest value of sound pressure level (SPL) of rhonchi/moist crackles decrease with the increase of bronchial generation. The change rates of dominant frequency of rhonchi / moist crackles in adjacent generations were 5.0 ± 0.1 ~ 9.1 ± 0.2% and 3.1 ± 0.1 ~ 11.9 ± 0.3%, respectively, which is concentrated in 290 ~ 420 Hz and 200 ~ 300 Hz, respectively. The change rates of SPL of rhonchi/moist crackles were 8.8 ± 0.1 ~ 15.7 ± 0.1% and 7.1 ± 0.1 ~ 19.5 ± 0.2%, respectively, which is concentrated in 28 ~ 50 dB and 16 ~ 32 dB, respectively. In the same generation of bronchus (e.g., G8, G9) with the same degree of initial blockage, the dominant frequency and SPL of moist crackles can be 3.7 ± 0.2% and 4.5 ± 0.3% slightly higher than that of rhonchi, respectively. This research is conducive to the establishment of a rapid and accurate noninvasive diagnosis system for respiratory diseases.


Assuntos
Sons Respiratórios , Doenças Respiratórias , Humanos , Sons Respiratórios/diagnóstico , Brônquios , Simulação por Computador
3.
Langmuir ; 39(38): 13735-13747, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703208

RESUMO

The role of surfactants in the flow of a droplet driven by a pressure gradient through a constricted microchannel is simulated by using our recently developed lattice Boltzmann method. We first study the surfactant role on a droplet flowing through a microchannel with a shrunken square section under different surfactant concentrations and capillary numbers (i.e., imposed pressure gradients). As the surfactant concentration increases, the droplet flow regime first changes from the flow regime I of the droplet getting stuck at the entrance of the constricted channel to the flow regime II of the droplet flowing through the constricted channel with breakup, and then to the flow regime III of the droplet flowing through the constricted channel without breakup. As the capillary number increases, the surfactant role on the number of mother droplets breaking up and the time of mother droplets completely flowing through the constricted section tend to decrease, suggesting that the surfactant effects are gradually weakened. Then, a phase diagram describing how the surfactant concentration and capillary number affect the droplet flow regime is presented. As the surfactant concentration increases, the critical capillary number that distinguishes droplet flow regimes I from II gradually decreases, while the critical capillary number that distinguishes droplet flow regimes II from III first increases and then decreases.

4.
Small ; 18(39): e2203872, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045100

RESUMO

The development of multifunctional and robust swimming microrobots working at the free air-liquid interface has encountered challenge as new manipulation strategies are needed to overcome the complicated interfacial restrictions. Here, flexible but reliable mechanisms are shown that achieve a remote-control bubble microrobot with multiple working modes and high maneuverability by the assistance of a soft air-liquid interface. This bubble microrobot is developed from a hollow Janus microsphere (JM) regulated by a magnetic field, which can implement switchable working modes like pusher, gripper, anchor, and sweeper. The collapse of the microbubble and the accompanying directional jet flow play a key role for functioning in these working modes, which is analogous to a "bubble tentacle." Using a simple gamepad, the orientation and the navigation of the bubble microrobot can be easily manipulated. In particular, a speed modulation method is found for the bubble microrobot, which uses vertical magnetic field to control the orientation of the JM and the direction of the bubble-induced jet flow without changing the fuel concentration. The findings demonstrate a substantial advance of the bubble microrobot specifically working at the air-liquid interface and depict some nonintuitive mechanisms that can help develop more complicated microswimmers.


Assuntos
Microbolhas , Água , Campos Magnéticos
5.
Sci Total Environ ; 831: 154931, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364181

RESUMO

The distal lung (G14-G23), which are composed of alveoli and bronchi, are responsible for almost all gas exchange and micro- and nanoparticle deposition in the lungs. In the existing research using computational fluid dynamics, the geometric modeling accuracy of the bronchial bifurcation structure is given priority, and then the alveoli are attached to bronchi as discrete spherical crowns. This method ignores the correlation between alveoli. In fact, the alveoli have a tessellated distribution, and adjacent alveoli are connected by several alveolar pores. Due to the huge number of alveoli, this seemingly small difference will be greatly amplified, which may lead to a large deviation in the prediction of the overall flow. Accordingly, the objective of this study is to construct a two-dimensional distal lung model including the bronchi, acini, and alveolar pores by using the methods of regular hexagonal tessellational subdivision, fusion, and coordinate transformation. A moving boundary is introduced to simulate the process of airflow and particle deposition in the distal lung, and the effects of bronchial deformation, respiratory frequency, and alveolar pores are obtained. The results show that there are significant differences in intrapulmonary flow patterns with and without alveolar pores. Alveolar pores can establish bypass ventilation downstream of a blockage, thus providing a pathway for particles to enter the airways downstream of the blockage. Changing the respiratory frequency and the amplitude of bronchial deformation will change the relative velocity between particles and moving wall, which, in turn, will change the particle deposition efficiency in the distal lung. To summarize this study, a geometric modeling method for the distal lung with alveolar pores is established, and the important roles of detailed characteristics of the distal lung are revealed. The findings of this study provide a reasonable hydrodynamic mechanism for the prevention of related respiratory diseases.


Assuntos
Pulmão , Respiração , Aerossóis , Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Tamanho da Partícula , Alvéolos Pulmonares
6.
Langmuir ; 34(35): 10426-10433, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30091934

RESUMO

Bubble-driven micromotors have attracted substantial interest due to their remarkable self-motile and cargo-delivering abilities in biomedical or environmental applications. Here, we developed a hollow micromotor that experiences fast self-propulsion underneath an air-liquid interface by periodic bubble growth and collapse. The collapsing of a single microbubble induces a ∼1 m·s-1 impulsive jetting flow that instantaneously pushes the micromotor forward. Unlike previously reported micromotors propelled by the recoiling of bubbles, cavitation-induced jetting further utilizes the energy stored in the bubble to propel the micromotor and thus enhances the energy conversion efficiency by 3 orders of magnitude. Four different modes of propulsion are, for the first time, identified by quantifying the dependence of propulsion strength on microbubble size. Meanwhile, the vertical component of the jetting flow counteracts the buoyancy of the micromotor-bubble dimer and facilitates counterintuitive hovering underneath the air-liquid interface. This work not only enriches the understanding of the propulsion mechanism of bubble-driven micromotors but also gives insight into the physical aspects of cavitation bubble dynamics near the air-liquid interface on the microscale.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24125265

RESUMO

Spherical Janus particles are one of the most prominent examples for active Brownian objects. Here, we study the diffusiophoretic motion of such microswimmers in experiment and in theory. Three stages are found: simple Brownian motion at short times, superdiffusion at intermediate times, and finally diffusive behavior again at long times. These three regimes observed in the experiments are compared with a theoretical model for the Langevin dynamics of self-propelled particles with coupled translational and rotational motion. Besides the mean square displacement also higher displacement moments are addressed. In particular, theoretical predictions regarding the non-Gaussian behavior of self-propelled particles are verified in the experiments. Furthermore, the full displacement probability distribution is analyzed, where in agreement with Brownian dynamics simulations either an extremely broadened peak or a pronounced double-peak structure is found, depending on the experimental conditions.

8.
Langmuir ; 25(6): 3336-9, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19708133

RESUMO

We present a microfluidic particle-trap array that utilizes negative dielectrophoresis (nDEP) force and hydrodynamic force. The traps are located at the stagnation points of cylindrical pillars arranged in a regular array, and they can function as both single-particle traps (capable of discriminating particles based on size) and multiparticle traps (capable of controlling the number of particles trapped). By adjusting the relative strength of the nDEP and hydrodynamic forces, we are able to control the number of trapped particles accurately. We have used 5 microm polystyrene beads to validate and demonstrate the capability of this new particle-trap design. Pulsed nDEP was used to increase the selectivity and stability. Good correlation between simulation and the experimental results was obtained.

9.
Lab Chip ; 9(16): 2306-12, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19636460

RESUMO

In this paper, we introduce a dielectrophoresis (DEP)-based separation method that allows for tunable multiplex separation of particles. In traditional DEP separations where the field is applied continuously, size-based separation of particles uses the cubic dependence of the DEP force on particle radius, causing large particles to be retained while small particles are released. Here we show that by pulsing the DEP force in time, we are able to reverse the order of separation (eluting the large particles while retaining the small ones), and even extract mid-size particles from a heterogeneous population in one step. The operation is reminiscent of prior dielectrophoretic ratchets which made use of DEP and Brownian motion, but we have applied the asymmetric forces in time rather than in a spatial arrangement of electrodes, thus simplifying the system. We present an analytical model to study the dynamic behavior of particles under pulsed DEP and to understand the different modes of separation. Results from the model and the experimental observations are shown to be in agreement.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos , Eletrodos , Microesferas , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...