Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407125, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828628

RESUMO

Trees grow by coupling the transpiration-induced nutrient absorption from external sources and photosynthesis-based nutrient integration. Inspired by this manner, we designed a class of polyion complex (PIC) hydrogels containing isolated liquid-filled voids for growing texture surfaces. The isolated liquid-filled voids were created via irreversible matrix reconfiguration in a deswelling-swelling process. During transpiration, these voids reversibly collapse to generate negative pressures within the matrices to extract polymerizable compounds from external sources and deliver them to the surface of the samples for photopolymerization. This growth process is spatial-controllable and can be applied to fabricate complex patterns consisting of different compositions, suggesting a new strategy for making texture surfaces.

2.
Angew Chem Int Ed Engl ; 63(17): e202320095, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38419359

RESUMO

Ostwald ripening (OR), a classic solution theory describing molecular transfer from metastable crystal to stable one, is applied to design time-dependent crystal hydrogels that can automatically change their mechanical properties. Using a system made from crosslinked polyacrylamide (PAM) and sodium acetate (NaAc), we demonstrate that metastable fibrous crystal networks of NaAc preferably form in PAM hydrogels via a polymer-involving mismatch nucleation. These fibrous crystals would undergo OR and evolve into isolated bulk crystals, leading to a significant reduction in material rigidity (179 folds) and interfacial adhesion (20 folds). This transformation can be applied to program time-dependent self-recovery in shape and self-delamination. Since OR is a ubiquitous, robust feature of various crystals, the approach reported here represents a new direction for designing advanced transient soft materials.

3.
Nat Commun ; 15(1): 1884, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424061

RESUMO

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.


Assuntos
DNA , Nanopartículas , Feminino , Animais , Camundongos , RNA Mensageiro/genética , Pulmão , Lipídeos
4.
J Colloid Interface Sci ; 660: 458-468, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246049

RESUMO

The high activity barriers of Li2S nucleation and deposition limit the redox reaction kinetics of lithium polysulfides (LiPSs), meanwhile, the significant shuttle effect of LiPSs hampers the advancement of Li-S batteries (LSBs). In this work, a NiSe2/CoSe2-rGO (NiSe2/CoSe2-G) sulfur host with bifunctional catalytic activity was prepared through a hard template method. Electrochemical experiment results confirm that the combination of NiSe2 and CoSe2 not only facilitates the bidirectional catalytic function during charge and discharge processes, but also increases the active sites toward LiPSs adsorption. Simultaneously, the highly conductive rGO network enhances the electronic conductivity of NiSe2/CoSe2-G/S and provides convenience for loading NiSe2/CoSe2 catalysts. Benefitting from the exceptional catalytic-adsorption capability of NiSe2/CoSe2 and the presence of rGO, the NiSe2/CoSe2-G/S electrode exhibits excellent electrochemical properties. At 1C, it demonstrates a low capacity attenuation of 0.087 % per cycle during 500 cycles. The electrode can maintain a discharge capacity of 927 mAh/g at a sulfur loading of 3.3 mg cm-2. The bidirectional catalytic activity of NiSe2/CoSe2-G offers a prospective approach to expedite the redox reactions of active S, meanwhile, this work also offers an ideal approach for designing efficient S hosts for LSBs.

5.
J Phys Chem Lett ; 14(43): 9624-9632, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870322

RESUMO

The revelation of the underlying structure-property relationship of single-atom catalysts (SACs) is a fundamental issue in the oxygen reduction reaction (ORR). Here we present systematic theoretical and experimental investigations of various N-doped graphdiyne (NGDY) supported transition metals (TMs) to shed light on this relationship. Calculation results indicate that the TMs' comprehensive activities follow the order of Pd@NGDY > Ni@NGDY > Co@NGDY > Fe@NGDY, which fits well with our experimental conclusion. Moreover, detailed structure-property relationship (194 in total) analysis suggests that the key-species binding stability (ΔG*OH), the d-orbital center (εd/εd-a) and charge transfer (ΔQTM/ΔQTM-a) of the active metal before/after reactants adsorption and the bond length of TM-O (LTM-O) as descriptors can well reflect the intermediate binding stability or ORR activity on different TM-SACs. Specifically, the change trend of catalytic activity is opposite to that of intermediate binding stability, meaning that too strongly bonded *OOH, *O, and *OH intermediates are unfavorable for ORR.

6.
Mater Horiz ; 10(11): 5256-5262, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37740393

RESUMO

Thanks to the non-destructiveness and spatial-controllability of light, photoswitchable fluorescent polymers (PFPs) have been successfully applied in advanced anti-counterfeiting and information encryption. However, most of them are not suitable for use in harsh underwater environments, including high salinity seawater. In this study, by integrating photochromic molecules into a hydrophobic polymer matrix with the fluorine elastomer, including dipole-dipole interactions, we describe a class of novel photoswitchable supramolecular fluorescent polymers (PSFPs) that can adaptively change their fluorescence between none, green and red by the irradiation of different light. The PSFPs not only exhibited excellent photoswitchable properties, including fast photo-responsibility, prominent photo-reversibility, and photostability, but also exhibited some desired properties, including exceptional stretchability, hydrophobicity, antifouling, self-healing ability, simple preparation process, and processability. We thus demonstrated their applications in underwater data encryption and anti-counterfeiting labels.

7.
Angew Chem Int Ed Engl ; 62(47): e202306565, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432074

RESUMO

The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.

8.
Nat Commun ; 14(1): 3302, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280214

RESUMO

Growth constitutes a powerful method to post-modulate materials' structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.

10.
ACS Appl Mater Interfaces ; 15(13): 17113-17122, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946793

RESUMO

Electro-responsive dynamic hydrogels, which possess robust mechanical properties and precise spatiotemporal resolution, have a wide range of applications in biomedicine and energy science. However, it is still challenging to design and prepare electro-responsive hydrogels (ERHs) which have all of these properties. Here, we report one such class of ERHs with these features, based on the direct current voltage (DCV)-induced rearrangement of sodium dodecyl sulfate (SDS) micelles, where the rearrangement can tune the hydrogel networks that are originally maintained by the SDS micelle-assisted hydrophobic interactions. An enlarged mesh size is demonstrated for these ERHs after DCV treatment. Given the unique structure and properties of these ERHs, hydrophobic cargo (thiostrepton) has been incorporated into the hydrogels and is released upon DCV loading. Additionally, these hydrogels are highly stretchable (>6000%) and tough (507 J/m2), showing robust mechanical properties. Moreover, these hydrogels have a high spatiotemporal resolution. As the cross-links within our ERHs are enabled by the non-covalent (i.e., hydrophobic) interactions, these hydrogels are self-healing and malleable. Considering the robust mechanical properties, precise spatiotemporal resolution, dynamic nature (e.g., injectable and self-healing), and on-demand drug delivery ability, this class of ERHs will be of great interest in the fields of wearable bioelectronics and smart drug delivery systems.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Micelas
11.
ACS Appl Mater Interfaces ; 15(8): 11333-11341, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795999

RESUMO

Switchable surfaces play an important role in the development of functional materials. However, the construction of dynamic surface textures remains challenging due to the complicated structural design and surface patterning. Herein, a pruney finger-inspired switchable surface (PFISS) is developed by constructing water-sensitive surface textures on a polydimethylsiloxane substrate by taking advantage of the hygroscopicity of the inorganic salt filler and the 3D printing technology. Like human fingertips, the PFISS shows high water sensitivity with obvious surface variation in wet and dry states, which is actuated by water absorption-desorption of the hydrotropic inorganic salt filler. Besides, when the fluorescent dye is optionally added into the matrix of the surface texture, water-responsive fluorescent emitting is observed, providing a feasible surface-tracing strategy. The PFISS shows effective regulation of the surface friction and performs a good antislip effect. The reported synthetic strategy for the PFISS offers a facile way for building a wide range of switchable surfaces.

12.
ACS Appl Mater Interfaces ; 15(1): 2267-2276, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573932

RESUMO

Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.

13.
Nat Commun ; 13(1): 7823, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535934

RESUMO

Many organisms produce stunning optical displays based on structural color instead of pigmentation. This structural or photonic color is achieved through the interaction of light with intricate micro-/nano-structures, which are "grown" from strong, sustainable biological materials such as chitin, keratin, and cellulose. In contrast, current synthetic structural colored materials are usually brittle, inert, and produced via energy-intensive processes, posing significant challenges to their practical uses. Inspired by the brilliantly colored peacock feathers which selectively grow keratin-based photonic structures with different photonic bandgaps, we develop a self-growing photonic composite system in which the photonic bandgaps and hence the coloration can be easily tuned. This is achieved via the selective growth of the polymer matrix with polymerizable compounds as feeding materials in a silica nanosphere-polymer composite system, thus effectively modulating the photonic bandgaps without compromising nanostructural order. Such strategy not only allows the material system to continuously vary its colors and patterns in an on-demand manner, but also endows it with many appealing properties, including flexibility, toughness, self-healing ability, and reshaping capability. As this innovative self-growing method is simple, inexpensive, versatile, and scalable, we foresee its significant potential in meeting many emerging requirements for various applications of structural color materials.


Assuntos
Nanoestruturas , Polímeros , Animais , Polímeros/química , Pigmentação , Fótons , Celulose
14.
Mater Today Bio ; 17: 100476, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36407911

RESUMO

The active forces exerted from the extracellular matrix (ECM) to mechanoreceptors have crucial impact on many cell functions and disease development. However, our understanding of the underlying mechanisms is held back due to the lack of ECM mimicking platform able to apply molecularly resolved forces to cells. Herein, we present novel hydrogel platform capable of generate pN range forces to specific cellular receptors, at molecular scale. This capability was achieved through near-infrared (NIR) light regulated macromolecular actuators functionalized within the platform. This platform enables us to reveal cell responses to molecularly resolved forces under controlled magnitude (150-400 â€‹pN) and frequency (up to 100 â€‹Hz) on matrix with varied stiffness. We find the stiffness of the matrix has a large influence on the applied force transduction to cells. This versatile platform holds the potential for establishing correlation between receptor signaling pathways and cellular responses closer to physiological conditions.

15.
Adv Mater ; 34(30): e2202167, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35611542

RESUMO

The dynamic application environments of superhydrophobic surfaces, such as in the manufacturing, chemical, and garment industries, require the fast adaptiveness of the surfaces to their surroundings. Despite the progress in materials and structural design of superhydrophobic surfaces, simultaneously achieving high superhydrophobic stability and low adhesion by traditional design is still challenging. Here, a liquid-pressure-guided superhydrophobic surface with self-adjustable solid-liquid stability, and adhesion is demonstrated when reacting to the dynamic environmental requirements. To understand the underlying adaptive processes, the liquid impalement dynamics is imaged in three dimensions by confocal microscopy and the stability and superhydrophobicity are measured in varied systems. It is envisioned that the design strategy of liquid-pressure-guided superhydrophobic surfaces with dynamic anti-infiltration capability can stimulate the development of stable superhydrophobicity under complex wetting conditions.

16.
ACS Appl Mater Interfaces ; 14(17): 20073-20082, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439417

RESUMO

It is challenging to design complex synthetic life-like systems that can show both autoevolution and fuel-driven transient behaviors. Here, we report a new class of chemical reaction networks (CRNs) to construct life-like polymer hydrogels. The CRNs are constituted of autocatalytic cascade reactions and fuel-driven reaction networks. The reactions start with only two compounds, that is, thiol of 4-arm-PEG-SH and thiuram disulfides, and undergo thiol oxidation (k1), disulfide metathesis (k2), and thionate hydrolysis-coupling reactions (k3) subsequently, leading to a four-state autonomous transition of sol(I) → soft gel → sol(II) → stiff gel. Moreover, thiuram disulfides can be applied as a fuel to drive the repeated occurrence of metathesis and hydrolysis-coupling reactions, generating dissipative stiff gel → sol(II) → stiff gel cycles. Systematic kinetics studies reveal that the event and lifetime of every transient state could be delicately tailored-up by varying the thiuram disulfide concentration, pH of the system, and thiuram structures. Since the consecutive transient behaviors are precisely predictable, we envision the strategy's potential in guiding the molecular designs of autonomous and adaptive materials for many fields.

17.
ACS Appl Mater Interfaces ; 14(6): 8473-8481, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129323

RESUMO

Living organisms are open systems that can incorporate externally provided nutrients to vary their appearances and properties, while synthetic materials normally have fixed sizes, shapes, and functions. Herein, we report a strategy for enabling cross-linked polymers to continuously grow with programmable bulky structures and properties. The growing strategy involves repeatable processes including swelling of polymerizable components into the cross-linked polymers, in situ polymerization of the components, and homogenization of the original and newborn polymer networks. Using acrylate-based polymers as an example, we demonstrate that homogenization allows the grown polymer materials to further integrate various polymerizable components to alternate their bulky properties. During the growth, the changes from elastomers to organogels and then to hydrogels with updated covalent-linked functions (i.e., photochromism and thermoresponsiveness) are shown. Since this growing strategy is applicable to different acrylate systems, we envision its great potential in the design of next-generation polymers, smartening systems, and postmodification of cross-linked polymer materials.

18.
ACS Appl Mater Interfaces ; 14(3): 4571-4578, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020361

RESUMO

Polymer coatings with comprehensive properties including passive radiative cooling, anti-fouling, and self-healing constitute a promising energy-saving strategy but have not been well documented yet. Herein, we reported a class of novel multifunctional supramolecular polysiloxane composite coatings showing the combination of these features. The coatings have a hybrid structure with a slippery liquid-infused porous surface and a gradient polymer-Al2O3 composite matrix constructed by reversible hydrogen bonding. The gradient matrix consists of a polymer-rich top and a particle-rich bottom favoring coating attachment on rigid substrates. Such a complex structure can be obtained by simply casting the suspending solutions of the polydimethylsiloxane (PDMS)-urea copolymer and Al2O3 on substrates followed by swelling silicone oil. Obtained coatings display good passive daytime radiative cooling (a temperature drop of ∼2 °C), self-healing ability, and anti-fouling properties. Since the comprehensive performances and the facile fabrication, the coatings should have application potential for various thermal management purposes.

19.
Mater Horiz ; 8(5): 1481-1487, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846456

RESUMO

Dynamic exchange reactions in covalent adaptable networks (CANs) are difficult to probe directly via various macroscopic mechanical methods. Herein, we report a fluorescent strategy for directly reporting the dynamic bond exchange in transesterification-based CANs by using folding molecular probes. The folding probes (PDI-dimers) consist of two perylene diimide (PDI) cores, a spacer of dynamic esters between the two PDI cores, and reactive terminal groups. During transesterification in CANs, the PDI-dimers unfold their PDI excimers to show a sharp fluorescent color change from orange to bright yellow. This visual strategy is demonstrated by a crosslinked thiol-Michael network (TMN) and poly(4-hydroxybutyl acrylate) network (PHBA). The dynamic behaviors like stress relaxation and self-stiffening in these CANs can be directly read out via the change of fluorescent color. This method can provide quantitative information and show spatiotemporal resolution and therefore, can be applied to probe various dynamic chain exchange mechanisms in crosslinked materials.


Assuntos
Corantes Fluorescentes , Polímeros , Compostos de Sulfidrila
20.
Adv Mater ; 33(22): e2007154, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891327

RESUMO

In-fiber fluid instability can be harnessed to realize scalable microparticles fabrication with tunable sizes and multifunctional characteristics making it competitive in comparison to conventional microparticles fabrication methods. However, since in-fiber fluid instability has to be induced via thermal annealing and the resulting microparticles can only be collected after dissolving the fiber cladding, obtaining contamination-free particles for high-temperature incompatible materials remains great challenge. Herein, confinement-free fluid instability is demonstrated to fabricate polymeric microparticles in a facile manner induced by the ultralow surface energy of the superamphiphobic surface. The polymer solution columns break up into uniform droplets then form spherical particles spontaneously in seconds at ambient temperature. This method can be applied to a variety of polymers spanning an exceptionally wide range of sizes: from 1 mm down to 1 µm. With the aid of microfluidic spinning instrument, a large quantity of microparticles can be obtained, making this method promising for scaling up production. Notably, through simple modification of the feed solution configuration, composite/structured micromaterials can also be produced, including quantum-dots-labeled fluorescent particles, magnetic particles, core-shell particles, microcapsules, and necklace-like microfibers. This method, with general applicability and facile control, is envisioned to have great prospects in the field of polymer microprocessing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...