Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e12891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186482

RESUMO

Based on two years of field experiments, under different soil tillage methods and straw management practices, which included conventional tillage (CT), subsoiling (SS), rotary tillage (RT), and no-tillage (NT), combined with either straw return (S) or straw removal (0), we characterized the dynamic changes in Δ13C among three height layers [upper (U, 240 cm above the ground), middle (M, 120 cm above the ground), and lower (L, 30 cm above the ground)] of the summer maize canopy. The Δ13C, the factors affecting it, and the relationships between Δ13C and soil water content (SWC), the leaf area index (LAI), canopy microclimate, and the CO2 concentration were elucidated. The results indicated that the Δ13C of summer maize at the pre-filling stage was greater than that at the post-filling stage. Δ13C also varied at different heights, with the order of the Δ13C values being L > U > M. Among the different tillage methods, the Δ13C values were ordered SSS > CTS > RTS > NTS. SSS and NTS significantly increased the LAI; air temperature and relative humidity tended to gradually decrease with the increase in height of summer maize. Correlation analyses of the various influencing factors and Δ13C showed that SWC, LAI, air temperature, and CO2 concentration were all positively correlated with Δ13C, in which LAI and air temperature were significantly or extremely significantly positively correlated with Δ13C. In addition, we show that Δ13C can be used as a prediction index for summer maize yield, providing a theoretical basis for future yield research that may save precious time in summer maize breeding efforts.


Assuntos
Agricultura , Zea mays , Agricultura/métodos , Isótopos de Carbono/análise , Dióxido de Carbono/análise , Melhoramento Vegetal , Solo , Água/análise
2.
PeerJ ; 9: e11099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828919

RESUMO

BACKGROUND: Soil degradation is one of the main problems in agricultural production and leads to decreases in soil quality and productivity. Improper farming practices speed this process and are therefore not conducive to food security. The North China Plain (NCP) is a key agricultural area that greatly influences food security in China. To explore the effects of different tillage measures on aggregate-associated organic carbon (AOC), the accumulation and transport of dry matter, and maize yield, and to identify the most suitable tillage method for use on the NCP, a field experiment was conducted at Shandong Agricultural University from 2016-2017 using plots that have been farmed using conservation tillage since 2002. METHODS: In this study, Zhengdan 958 summer maize was used as the test material and undisturbed soil and plant samples were obtained under four tillage methods-no-tillage (NT, tillage depth: 0 cm); rotary tillage (RT, tillage depth: 10 cm); conventional tillage (CT, tillage depth: 20 cm); subsoiling (SS, tillage depth: 40 cm)-which were used to determine the AOC and dry matter contents, as well as the yields of two summer maize growing seasons. Each sample was replicated three times and the AOC content was determined via potassium dichromate oxidation colorimetry. Potassium dichromate oxidized organic carbon in organic matter was employed to reduce hexadecent chromium into green trivalent chromium. Colorimetry was then used to determine the amount of reduced trivalent chromium and calculate the organic matter content. RESULTS: The resulting data were statistically analyzed and the results showed that, compared with CT, the AOC contents with NT and SS increased by 5.65% and 9.73%, respectively, while that with RT decreased by 0.12%. Conventional tillage resulted in the highest mean dry matter weight when the maize reached maturity, which was 19.19%, 9.83%, and 3.38% higher than those achieved using NT, RT, and SS, respectively. No significant difference was found between CT and SS treatments, both of which tended to increase the accumulation of dry matter as well as its contribution of assimilates to grain yield post-anthesis. Compared with CT, the mean yield increased at a rate of 0.18% with SS, while yields declined at rates of 17.17% and 11.15 with NT and RT, respectively. The yield with NT was the lowest, though the harvest indices with NT and SS were higher than those with RT and CT. Overall, SS increased the accumulation of dry matter and its contribution of assimilates to grain yields post-anthesis, as well as the AOC content and yields, making it the ideal tillage method for the NCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...