Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(1): 26, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110586

RESUMO

MAIN CONCLUSION: It was proved for the first time that the miR172e-LbrAP2 module regulated the vegetative growth phase transition in Lilium, which provided a new approach to shorten the juvenile stage of Lilium, improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2, upon binding, were identified by RLM 5' RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2. Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2, thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.


Assuntos
Lilium , Lilium/genética , Lilium/metabolismo , Flores/genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Front Microbiol ; 14: 1201274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415822

RESUMO

To better conserve the ecology of the wild Rhododendron mucronulatum range, we studied the rhizosphere microenvironment of R. mucronulatum in Beijing's Yunmeng Mountain National Forest Park. R. mucronulatum rhizosphere soil physicochemical properties and enzyme activities changed significantly with temporal and elevational gradients. The correlations between soil water content (SWC), electrical conductivity (EC), organic matter content (OM), total nitrogen content (TN), catalase activity (CAT), sucrose-converting enzyme activity (INV), and urease activity (URE) were significant and positive in the flowering and deciduous periods. The alpha diversity of the rhizosphere bacterial community was significantly higher in the flowering period than in the deciduous period, and the effect of elevation was insignificant. The diversity of the R. mucronulatum rhizosphere bacterial community changed significantly with the change in the growing period. A network analysis of the correlations revealed stronger linkages between the rhizosphere bacterial communities in the deciduous period than in the flowering period. Rhizomicrobium was the dominant genus in both periods, but its relative abundance decreased in the deciduous period. Changes in the relative abundance of Rhizomicrobium may be the main factor influencing the changes in the R. mucronulatum rhizosphere bacterial community. Moreover, the R. mucronulatum rhizosphere bacterial community and soil characteristics were significantly correlated. Additionally, the influence of soil physicochemical properties on the rhizosphere bacterial community was larger than that of enzyme activity on the bacterial community. We mainly analyzed the change patterns in the rhizosphere soil properties and rhizosphere bacterial diversity of R. mucronulatum during temporal and spatial variation, laying the foundation for further understanding of the ecology of wild R. mucronulatum.

3.
Mol Genet Genomics ; 297(1): 63-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779936

RESUMO

The transformation of plants from juveniles to adults is a key process in plant growth and development, and the main regulatory factors are miR156 and SQUAMOSA promoter binding protein-like (SPL) transcription factors. Lilium is an ornamental bulb, but it has a long maturation time. In this experiment, Lilium bulbs were subjected to a temperature treatment of 15 °C for 4 weeks to initiate vegetative phase change. Transmission electron microscopy indicated the cell wall of bud core tissue undergoing vegetative phase change became thinner, the starch grains were reduced, and the growth of the juvenile stage was accelerated. The key transcription factors LbrSPL9 and LbrSPL15 were cloned, and the phylogenetic analysis showed they possessed high homology with other plant SPLs. Subcellular localization and transcription activation experiments confirmed LbrSPL9 and LbrSPL15 were mainly located in the nucleus and exhibited transcriptional activity. The results of in situ hybridization showed the expression levels of LbrSPL9 and LbrSPL15 were increased after temperature change treatment. The functional verification experiment of the transgenic plants confirmed that the overexpression of LbrSPL9 and LbrSPL15 could shorten maturation time. These findings help elucidate the regulatory mechanisms of phase transition in Lilium and provide a reference for breeding research in other bulbous flowers.


Assuntos
Lilium/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Lilium/classificação , Fenótipo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
4.
Front Plant Sci ; 13: 1047452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714704

RESUMO

Acer pictum subsp. mono is a colorful tree species with considerable ornamental and economic value. However, little is known about the metabolism and regulatory mechanism of leaf color change in A. p. subsp. mono. To reveal the molecular mechanism of leaf color change in A. p. subsp. mono, the present study examined the bud mutation branches and compared the metabolites of the red leaves (AR) of the bud mutation branches of A. p. subsp. mono with those of the green leaves (AG) of the wild-type branches. It was found that the chlorophyll and carotenoids content of the red leaves decreased significantly, while anthocyanins, and various antioxidant enzymes increased significantly compared with the green leaves. The glycosides cyanidin, pelargonidin, malvidin, petunidin, delphinidin, and peonidin were detected in AR by liquid chromatography-mass spectrometry. The cyanidin glycosides increased, and cyanidin 3-O-glycoside was significantly upregulated. We analyzed the transcriptome and small RNA of A. p. subsp. mono leaves and detected 4061 differentially expressed mRNAs and 116 differentially expressed miRNAs. Through miRNA-mRNA association analysis, five differentially expressed modules were found; one miRNA targeted three genes, and four miRNAs targeted a single gene. Among them, miR160b, miR6300, and miR396g were found to be the key miRNAs regulating stable anthocyanin accumulation in A. p. subsp. mono leaves. By revealing the physiological response of leaf color change and the molecular regulatory mechanism of the miRNA, this study provides new insight into the molecular regulatory mechanism of leaf color change, thereby offering a foundation for future studies.

5.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37776367

RESUMO

BACKGROUND: The Lycophyta species are the extant taxa most similar to early vascular plants that were once abundant on Earth. However, their distribution has greatly diminished. So far, the absence of chromosome-level assembled lycophyte genomes has hindered our understanding of evolution and environmental adaption of lycophytes. FINDINGS: We present the reference genome of the tetraploid aquatic quillwort, Isoetes sinensis, a lycophyte. This genome represents the first chromosome-level assembled genome of a tetraploid seed-free plant. Comparison of genomes between I. sinensis and Isoetestaiwanensis revealed conserved and different genomic features between diploid and polyploid lycophytes. Comparison of the I. sinensis genome with those of other species representing the evolutionary lineages of green plants revealed the inherited genetic tools for transcriptional regulation and most phytohormones in I. sinensis. The presence and absence of key genes related to development and stress responses provide insights into environmental adaption of lycophytes. CONCLUSIONS: The high-quality reference genome and genomic analysis presented in this study are crucial for future genetic and environmental studies of not only I. sinensis but also other lycophytes.


Assuntos
Poliploidia , Tetraploidia , Humanos , Genômica , Diploide , Cromossomos , Filogenia
6.
Genome ; 62(12): 793-805, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31491334

RESUMO

Acer pictum subsp. mono is a colored leaf tree with vital ornamental and economic value. However, insufficient color change and early leaf fall in cities restrict its ornamental value. In this research, green and red leaves from wild A. p. subsp. mono were collected to study the regulatory mechanisms of leaf color change. Through the determination of plant physiological indexes, we found that the photosynthetic pigment content in red leaves decreased significantly compared with green leaves, while the anthocyanin content and antioxidant activity increased significantly compared with green leaves during the leaf color change process. Using transcriptome sequencing, we found more than 5500 differentially expressed genes, most of which were up-regulated. Many of the differentially expressed genes are involved in the anthocyanin metabolic pathway. The expression patterns of 15 key genes were investigated by quantitative real-time polymerase chain reaction. Among these genes, AmDFR and PAL1 are significant genes involved in the anthocyanin metabolic pathway, and CIPKs2, CIPKs6, CMLs1, CMLs38, AmGST1, AmGST2, GPX3, CBF, AmAPX, AmSOD, POD5, AmGR, and PSBY might be stress response genes that indirectly regulated the anthocyanin accumulation. The results showed that these genes play vital roles in the leaf color change of A. p. subsp. mono. This research will be helpful in further study of the molecular regulatory mechanisms of leaf color change and for the improvement of colored leaf plants.


Assuntos
Acer/genética , Folhas de Planta/genética , Acer/enzimologia , Acer/metabolismo , Cor , Perfilação da Expressão Gênica , Pigmentos Biológicos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Superóxido Dismutase/metabolismo
7.
Biomed Res Int ; 2015: 341598, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815311

RESUMO

Histone variants alter the nucleosome structure and play important roles in chromosome segregation, transcription, DNA repair, and sperm compaction. Histone H3 is encoded by many genes in most eukaryotic species and is the histone that contains the largest variety of posttranslational modifications. Compared with the metazoan H3 variants, little is known about the complex evolutionary history of H3 variants proteins in plants. Here, we study the identification, evolutionary, and expression analyses of histone H3 variants from genomes in major branches in the plant tree of life. Firstly we identified all the histone three related (HTR) genes from the examined genomes, then we classified the four groups variants: centromeric H3, H3.1, H3.3 and H3-like, by phylogenetic analysis, intron information, and alignment. We further demonstrated that the H3 variants have evolved under strong purifying selection, indicating the conservation of HTR proteins. Expression analysis revealed that the HTR has a wide expression profile in maize and rice development and plays important roles in development.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Histonas/genética , Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Centrômero/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Histonas/química , Dados de Sequência Molecular , Oryza/genética , Filogenia , Desenvolvimento Vegetal/genética , Isoformas de Proteínas/genética , Alinhamento de Sequência , Especificidade da Espécie , Zea mays/genética
8.
Plant Cell Rep ; 33(4): 617-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24682459

RESUMO

KEY MESSAGE: A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.


Assuntos
Adaptação Fisiológica/genética , DNA Bacteriano/genética , Secas , Genes de Plantas/genética , Mutagênese Insercional/métodos , Oryza/genética , Receptores de Glutamato/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta/genética , Mutagênese Insercional/genética , Oryza/fisiologia , Fenótipo , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...