Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824202

RESUMO

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Processamento Pós-Transcricional do RNA , Gradação de Tumores , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Multiômica
2.
Brain Res ; 1837: 148964, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677450

RESUMO

Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.


Assuntos
Inflamação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Mitocôndrias , Acidente Vascular Cerebral , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Acidente Vascular Cerebral/terapia , Mitocôndrias/metabolismo , Recuperação de Função Fisiológica/fisiologia , AVC Isquêmico/terapia , Células da Medula Óssea
3.
Curr Stem Cell Res Ther ; 19(5): 678-687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37151172

RESUMO

Ischemic stroke is the leading cause of death and disability worldwide, with increasing incidence and mortality, imposing a significant social and economic burden on patients and their families. However, cerebral vascular occlusion leads to acute loss of neurons and destruction of synaptic structures. The limited treatment options cannot adequately address intra-neuronal mitochondrial dysfunction due to stroke. Therefore, stem cell-derived mitochondria transplantation plays an important role in neuronal protection and recovery after stroke, when combined with the intracranial and extracranial immunoregulatory effects of stem cell therapy, revealing the mechanism of transferred mitochondria in stem cells in protecting neurological function among chronic-phase ischemic stroke by affecting the endogenous apoptotic pathway of neuronal cells. This research elaborated on the mitochondrial dysfunction in neurons after ischemic stroke, followed by human bone marrow mesenchymal stem cells (hBMSC) rescued damaged neurons by mitochondrial transfer through tunneling nanotubes (TNTs), and the immunomodulatory effect of the preferential transfer of stem cells to the spleen when transplanted into the body.which created an immune environment for nerve repair, as well as improved neurological recovery after the chronic phase of stroke. This review is expected to provide a novel idea for applying intracranial stem cell transplantation in chronic-phase ischemic stroke treatment.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Mitocondriais , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Mitocôndrias/metabolismo , Imunidade , Doenças Mitocondriais/metabolismo , Células da Medula Óssea/metabolismo
4.
Eur J Pharmacol ; 951: 175800, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201625

RESUMO

PURPOSE: Every year, there is a large number of people take aspirin and atorvastatin to prevent ischemic stroke, but the effect of these drugs on gut microbiota remains unknown. We aimed to examine the effects of long-term regular oral aspirin with atorvastatin to prevent ischemic stroke on human gut microbiota. METHODS: A cross-sectional study of 20 participants with the drugs over one year and the other 20 gender- and age-matching participants without medication were recruited from the Affiliated Hospital of Guizhou Medical University. The medication habits and dietary information were obtained using a questionnaire. Fecal samples collected from all participants were subjected to 16S rRNA sequencing of the microbiome. The datasets were analyzed using bioinformatics approaches. RESULTS: The Alpha diversity showed that compared with controls, medication participants had lower ACE and Chao1 index, while no difference in the Shannon index and Simpson index. The Beta diversity analysis revealed significant shifts in the taxonomic compositions of the two groups. Linear discriminant analysis effect size (LEfSe) analysis combined with receiver operating characteristic (ROC) curves revealed the marker bacteria associated with taking medication were g_Parabacteroides(AUC = 0.855), g_Bifidobacterium(AUC = 0.815), s_Bifidobacterium_longum_subsp(AUC = 0.8075), and with no taking medication was g_Prevotella_9(AUC = 0.76). CONCLUSIONS: Our findings indicated that long-term regular oral aspirin and atorvastatin modulate the human gut microbiota. Taking these drugs may affect the preventive effect of ischemic stroke by changing the abundance of specific gut microbiota.


Assuntos
Microbioma Gastrointestinal , AVC Isquêmico , Humanos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , AVC Isquêmico/prevenção & controle , Aspirina/uso terapêutico , RNA Ribossômico 16S/genética , Estudos Transversais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...