Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 139998, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852458

RESUMO

Heavy metal ion pollution poses significant risks to human health and ecological systems, and its monitoring is important. A sensitive and accurate surface-enhanced Raman spectroscopy (SERS) detection assay for Hg2+ was developed using Au@Ag/COF substrates and Y-shaped DNA labeled with two Raman reporters. The Au@Ag NPs in the COF produced robust and uniform E-fields, improving their detection reproducibility. The Y-shaped DNA design increased sensitivity with a low detection limit of 5.0 × 10-16 M by bringing the Raman reporter closer to the substrate surface. Additionally, the use of two Raman reporters allowed for a ratiometric method, improving detection accuracy by detecting both "signal-off" and "signal-on" signals. This selective sensor exhibited excellent recovery in river water, tap water, and milk samples, showcasing its robust biosensing capability for the detection of Hg2+ and its potential for sensing other heavy-metal ions in food and environmental applications.

2.
J Genet Genomics ; 51(2): 159-183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37516348

RESUMO

Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.


Assuntos
Edição de Genes , Osteoartrite , Humanos , Edição de Genes/métodos , Epigenoma , Qualidade de Vida , Edição de RNA , Osteoartrite/genética , Osteoartrite/terapia , Sistemas CRISPR-Cas/genética
3.
Protein Cell ; 14(12): 874-887, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905356

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.


Assuntos
Regulação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Humanos , Ativação Transcricional , Sistemas CRISPR-Cas/genética
4.
Biogeosciences ; 17(23): 6219-6236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35222652

RESUMO

Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatile-organic-compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38' N, 149°36' W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (~ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 µgC m-2 h-1 (mean of 85 µgC m-2 h-1) and monoterpene emission rates remained, on average, below 1 µgC m-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215 % emission increase in response to a 3-4°C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30°C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...