Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673069

RESUMO

This study explores the influence of micelles on the evolution of MCM-41's pore structure via 24 h hydrothermal treatments in a range of temperatures from 100 °C to 200 °C. MCM-41 was characterized using BET, SAXD, FTIR, TEM, and TG-DSC. The findings demonstrate that with temperature elevation from 100 °C to 160 °C, the micelles undergo expansion, leading to an enhanced lattice constant from 4.50 nm to 4.96 nm and an increase in pore diameter from 3.17 nm to 3.45 nm, while maintaining the structural orderliness of the pore channels. Upon cooling, the reversible contraction of micelles and the strategic addition of water glass contribute to a reduction in pore size. However, at a threshold of 180 °C, the SAXD (100) peak's half-peak width surges by approximately 40% relative to that at 160 °C, illustrating a progressive disruption of the hexagonal configuration of MCM-41. Coupled with elevated silica dissolution at higher temperatures in an alkaline solution, a total disintegration of the ordered pore structure at 200 °C results in a drastic reduction in the specific surface area to 307 m2/g. These results are beneficial to developing structural transformation mechanisms of MCM-41 materials and designing mesoporous materials via temperature modulation innovatively.

2.
Environ Res ; 227: 115774, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966993

RESUMO

Electrolytic manganese residue (EMR) is a harmful by-product in the electrolytic manganese industry. Calcination is an efficient method for disposing EMR. In this study, thermogravimetric-mass spectrometry (TG-MS) combined with X-ray diffraction (XRD) was used for analysing the thermal reactions and phase transitions during calcination. The pozzolanic activity of calcined EMR was determined by the potential hydraulicity test and strength activity index (SAI) test. The leaching characteristics of Mn were determined by TCLP test and BCR SE method. The results showed that MnSO4 was converted into stable MnO2 during calcination. Meanwhile, Mn-rich bustamite (Ca0.228Mn0.772SiO3) was converted into Ca(Mn, Ca)Si2O6. The gypsum was transformed into anhydrite and then decomposed into CaO and SO2. Additionally, the organic pollutants and ammonia were completely removed following calcination at 700 °C. The leaching concentration of Mn decreased from 819.9 mg L-1 to 339.6 mg L-1 following calcination at 1100 °C. The chemical forms of Mn were transformed from acid-soluble fraction to residual fraction. The pozzolanic activity tests indicated that EMR1100-Gy maintained a complete shape. The compressive strength of EMR1100-PO reached 33.83 MPa. Finally, the leaching concentrations of heavy metals met the standard limits. This study provides a better understanding for the treatment and utilization of EMR.


Assuntos
Manganês , Metais Pesados , Manganês/análise , Compostos de Manganês/química , Óxidos/química , Eletrólitos/química
3.
Materials (Basel) ; 13(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992863

RESUMO

Nanostructured (BiO)2CO3 samples were prepared, and their thermal decomposition behaviors were investigated by thermogravimetric analysis under atmospheric conditions. The method of preparation and Ca2+ doping could affect the morphologies of products and quantity of defects, resulting in different thermal decomposition mechanisms. The (BiO)2CO3 nanoplates decomposed at 300-500 °C with an activation energy of 160-170 kJ/mol. Two temperature zones existed in the thermal decomposition of (BiO)2CO3 and Ca-(BiO)2CO3 nanowires. The first one was caused by the decomposition of (BiO)4(OH)2CO3 impurities and (BiO)2CO3 with surface defects, with an activation energy of 118-223 kJ/mol, whereas the second one was attributed to the decomposition of (BiO)2CO3 in the core of nanowires, with an activation energy of 230-270 kJ/mol for the core of (BiO)2CO3 nanowires and 210-223 kJ/mol for the core of Ca-(BiO)2CO3 nanowires. Introducing Ca2+ ions into (BiO)2CO3 nanowires improved their thermal stability and accelerated the decomposition of (BiO)2CO3 in the decomposition zone.

4.
J Hazard Mater ; 350: 66-75, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453121

RESUMO

In this work, novel urchin-like Fe3O4@polydopamine (PDA)-Ag hollow microspheres have been prepared via a facile synthesis method by in situ reduction and growth of Ag nanoparticles on mussel-inspired PDA layers coated on Fe3O4 hollow cores. The catalytic reduction efficiency and adsorption performance of the as-prepared urchin-like Fe3O4@polydopamine (PDA)-Ag hollow microspheres for model organic dyes (i.e., methylene blue and rhodamine B) under varying pH condition have been systematically investigated, which are demonstrated to be significantly enhanced as compared to that of spherical (relatively smooth) solid Fe3O4@PDA-Ag microspheres. The as-prepared urchin-like Fe3O4@PDA-Ag hollow microspheres show high reusability, easy separability, and fast regeneration ability, with no obvious drop in the catalytic and adsorption efficiency after cyclic reuse. The versatile PDA coatings on the urchin-like microspheres allow further surface functionalization for development of multifunctional catalyst and adsorbent materials. This work provides a very useful and facile methodology for synthesizing and tuning the urchin-like morphology of Fe3O4@PDA-Ag microspheres, with great potential applications in catalysis and wastewater treatment.

5.
Chemosphere ; 181: 190-196, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28437744

RESUMO

The wire-like Fe3+-doped (BiO)2CO3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe3+-doped (BiO)2CO3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe3+-doped (BiO)2CO3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO)2CO3 nanowires decreased when Fe3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe3+-doped (BiO)2CO3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO42- after photocatalytic decomposition of xanthate solution. The Fe3+-doped (BiO)2CO3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO)2CO3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe3+-doped (BiO)2CO3, the xanthate was oxidized completely into CO2 and SO42-. The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well.


Assuntos
Bismuto/química , Compostos Férricos/química , Nanofios/química , Fotoquímica/métodos , Tionas/química , Dióxido de Carbono , Catálise , Íons , Luz , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos , Raios Ultravioleta , Difração de Raios X
6.
Chemosphere ; 149: 245-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26866962

RESUMO

(BiO)2CO3 nanowires were prepared by simple hydrothermal treatment of commercial Bi2O3 powders and characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of (BiO)2CO3 nanowires was studied through degradation of sodium isopropyl xanthate. Photocatalytic experimental results indicated that the as-prepared (BiO)2CO3 nanowires show high photocatalytic efficiency. Photocatalytic activity increased after two cycles. Time-dependent UV-vis spectra demonstrated that the final degradation products included isopropyl alcohol and carbon disulfide. UV-vis diffuse reflection spectra showed that the band gap of the as-prepared (BiO)2CO3 nanowires and recycled (BiO)2CO3 nanowires were 2.75 eV and 1.15 eV, respectively. XPS results indicated that formation of Bi2S3@(BiO)2CO3 core-shell nanowires occurred after recycled photodegradation of isopropyl xanthate owing to existence of two types of Bi configurations in the recycled (BiO)2CO3 nanowires. A probable degradation mechanism of isopropyl xanthate was also proposed.


Assuntos
Bismuto/química , Nanofios , Fotólise , Carbonatos , Catálise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...