Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 3): 125070, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244338

RESUMO

H. virescens is a perennial herbaceous plant with highly tolerant to cold weather, but the key genes that respond to low temperature stress still remain unclear. Hence, RNA-seq was performed using leaves of H. virescens treated at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 9416 DEGs were significantly enriched into seven KEGG pathways. The LC-QTRAP platform was performed using leaves of H. virescens leaves at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 1075 metabolites were detected, which were divided into 10 categories. Additionally, 18 major metabolites, two key pathways, and six key genes were mined using a multi-omics analytical strategy. The RT-PCR results showed that with the extension of treatment time, the expression levels of key genes in the treatment group gradually increased, and the difference between the treatment group and the control group was extremely significant. Notably, the functional verification results showed that the key genes positively regulated cold tolerance of H. virescens. These results can lay a foundation for the in-depth analysis of the mechanism of response of perennial herbs to low temperature stress.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Temperatura , Poaceae , Metabolômica , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
2.
Front Plant Sci ; 13: 938859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119608

RESUMO

Helictotrichon virescens is a perennial herbaceous plant with a life expectancy of about 10 years. It has high cold and heat resistance and can successfully survive over winter in the habitats with a temperature range of -25 to 25°C. Therefore, this study aimed to identify the key genes regulating low-temperature stress responses in H. virescens and analyze cold tolerant at molecular level. This study used RNA sequencing (RNA-Seq) and weighted gene co-expression network analysis (WGCNA) to identify the hub genes associated with cold tolerance in H. virescens. RT-PCR was conducted, homologous genes were identified, and related bioinformatics were analyzed to verify the identified hub genes. Moreover, WGCNA analysis showed that only the brown module had the highest correlation with the active-oxygen scavenging enzymes [peroxide (POD), superoxide dismutase (SOD), and catalase (CAT)]. The expression levels of three hub genes in the brown module (Cluster-37118.47362, cluster-37118.47713, and cluster-37118.66740) were significantly higher under low-temperature stress than those under control conditions. Furthermore, gene ontology (GO) and KEGG annotations showed that the three hub genes were mainly enriched in the metabolism pathways of sphingolipids, selenocompounds, glyoxylate, and dicarboxylate, carotenoids biosynthesis, and other biological pathways. The results of this study also showed that the subcellular localization prediction results showed that the cold tolerance hub genes were all localized to the plasma membrane. By constructing a protein interaction network, it was found that the hub gene Cluster-37118.66740 interacted with Sb09g003460.1 and Sb04g020180.1 proteins in Sorghum bicolor. By constructing phylogenetic trees of the four species of H. virescens, Sorghum bicolo, Oryza sativa Japonica, and Arabidopsis thaliana, the results showed that, the hub gene Cluster 37118.66740 (of H. virescens) and Os03g0340500 (of Oryza sativa Japonica) belonged to the same ancestral branch and were in the same subfamily. Thus, this study provides methodology and guidance to identify the cold tolerance genes for other herbage and their cold tolerant molecular mechanisms at molecular level.

3.
BMC Genomics ; 23(1): 280, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392804

RESUMO

BACKGROUND: Helictotrichon virescens is a perennial grass that is primarily distributed in high altitude areas of 2000 ~ 4500 m. It is widely cultivated in the Qinghai-Tibet Plateau of China, strongly resistant to cold, and an essential part of the wild herbs in this region. However, the molecular mechanism of the response of H. virescens to low temperature stress and the key regulatory genes for specific biological processes are poorly understood. RESULTS: Physiological and transcriptome analyses were used to study the cold stress response mechanism in H virescens. During the low temperature stress period, the content of chlorophyll a and b decreased more and more with the delay of the treatment time. Among them, the difference between the controls was not significant, and the difference between the control and the treatment was significant. At the same time, the expression of related differential genes was up-regulated during low temperature treatment. In addition, the plant circadian pathway is crucial for their response to cold stress. The expression of differentially expressed genes that encode LHY and HY5 were strongly up-regulated during cold stress. CONCLUSIONS: This study should help to fully understand how H. virescens responds to low temperatures. It answers pertinent questions in the response of perennial herbs to cold stress, i.e., how light and low temperature signals integrate to regulate plant circadian rhythms and Decrease of content of chlorophylls (which can be also accompanied with decrease of total quantity of reaction centers) leads to an increase in photosynthetic damage.


Assuntos
Regulação da Expressão Gênica de Plantas , Transcriptoma , Clorofila A , Temperatura Baixa , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Poaceae/genética , Estresse Fisiológico/genética , Temperatura
4.
Front Plant Sci ; 13: 995750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589089

RESUMO

Assessing the spatial distribution of organic matter and total nitrogen in soil is essential for management and optimum utilization of fertilizers. Therefore, the present field experiment was conducted to evaluate the impact of different planting pattern arrangements on the spatial distribution of soil total nitrogen and organic matter content under a maize/soybean strip relay intercropping system. The planting was arranged in a manner such that soil sampling could be done from continuous maize/soybean relay strip intercropping (MS1), maize/soybean relay strip intercropping in rotation (MS2), traditional maize/soybean intercropping (MS3), sole maize (M), sole soybean (S), and fallow land (FL) from 2018 to 2020. The results showed significant variations for soil organic matter and total nitrogen content under different planting pattern arrangements of maize and soybean in the strip relay intercropping system. Across all systems, the highest soil organic matter (29.19 g/kg) and total nitrogen (10.19 g/kg) were recorded in MS2. In contrast, the lowest soil organic matter (1.69 g/kg) and total nitrogen (0.64 g/kg) were observed in FL. Soil organic matter and total nitrogen in MS2 increased by 186.45% and 164.06%, respectively, when compared with FL. Soil organic matter and total nitrogen in MS2 increased by 186.45% and 164.06%, respectively, when compared with FL. Furthermore, under MS2, the spatial distribution of soil organic matter was higher in both maize and soybean crop rows as compared with other cropping patterns, whereas the soil total nitrogen was higher under soybean rows as compared with maize in all other treatment. However, correlation analysis of the treatments showed variations in organic matter content. It can be concluded that different planting patterns can have varying effects on soil organic matter and total nitrogen distribution under the strip relay intercropping system. Moreover, it is recommended from this study that MS2 is a better planting pattern for the strip relay intercropping system, which can increase the spatial distribution of soil organic matter and total nitrogen, thereby improving soil fertility, C:N ratio, and crop production. This study will serve as a foundation towards the scientific usage of chemical fertilizers in agricultural sector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...