Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(7): 537, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075049

RESUMO

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.


Assuntos
Neoplasias Hepáticas , Proteínas dos Microfilamentos , Proteínas Nucleares , Pseudópodes , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Pseudópodes/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Animais , Linhagem Celular Tumoral , Camundongos Nus , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Células Hep G2 , Camundongos
2.
iScience ; 26(6): 106852, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250786

RESUMO

Seven in absentia homolog 1 (SIAH1) was reported to be downregulated in hepatocellular carcinoma (HCC) and played an important role in HCC progression; however, the underlying reason remains unknown. Here, we found that Cathepsin K (CTSK), a protein potentially interacting with SIAH1, inhibits SIAH1 protein level. CTSK was highly expressed in HCC tissues. CTSK inhibition or downregulation suppressed HCC cell proliferation, whereas CTSK overexpression had the opposite effect; it promotes HCC cell proliferation by regulating the SIAH1/protein kinase B (AKT) pathway, wherein promotes SIAH1 ubiquitination. Neural precursor cells expressing developmentally downregulated 4 (NEDD4) was found to be a potential upstream ubiquitin ligase of SIAH1. Further, CTSK could mediate SIAH1 ubiquitination and degradation by increasing SIAH1 autoubiquitination and recruiting NEDD4 to ubiquitinate SIAH1. Finally, the roles of CTSK were confirmed in a xenograft mouse model. In conclusion, oncogenic CTSK was upregulated in human HCC tissues and accelerated HCC cell proliferation by downregulating SIAH1.

3.
Carcinogenesis ; 44(4): 304-316, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37038329

RESUMO

SIAH1 has been reported to participate in several human cancers, including hepatocellular carcinoma (HCC). However, the effect of SIAH1 on the epithelial-mesenchymal transition (EMT) has not been reported in HCC cells. Here, we discovered the inhibitory effect of SIAH1 on HCC cell migration and invasion, which was related with regulating EMT. Molecularly, a yeast two-hybrid experiment indicated that Cln Three Requiring 9 (CTR9) was a potential interacting protein of SIAH1, which was further verified by co-immunoprecipitation assays. Furthermore, SIAH1 inhibited the EMT of HCC cells through negatively regulating CTR9. Importantly, CTR9 was ubiquitinated and degraded by SIAH1 via the proteasome pathway in HCC cells. Additionally, it was showed that SIAH1 mainly mediated the K48-linked polyubiquitination on CTR9. Finally, the protein level of CTR9 was found to be inversely correlated with SIAH1 in human HCC tissues. Summed up all together, these findings reveal that SIAH1/CTR9 axis promotes the EMT of HCC cells and is a promising therapeutic target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA