Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Antiviral Res ; 228: 105919, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851592

RESUMO

Bacillus spp. has been considered a promising source for identifying new antimicrobial substances, including anti-viral candidates. Here, we successfully isolated a number of bacteria strains from aged dry citrus peel (Chenpi). Of note, the culture supernatant of a new isolate named Bacillus subtilis LjM2 demonstrated strong inhibition of influenza A virus (IAV) infection in multiple experimental systems in vitro and in vivo. In addition, the anti-viral effect of LjM2 was attributed to its direct lysis of viral particles. Further analysis showed that a protease which we named CPAVM1 isolated from the culture supernatant of LjM2 was the key component responsible for its anti-viral function. Importantly, the therapeutic effect of CPAVM1 was still significant when applied 12 hours after IAV infection of experimental mice. Moreover, we found that the CPAVM1 protease cleaved multiple IAV proteins via targeting basic amino acid Arg or Lys. Furthermore, this study reveals the molecular structure and catalytic mechanism of CPAVM1 protease. During catalysis, Tyr75, Tyr77, and Tyr102 are important active sites. Therefore, the present work identified a special protease CPAVM1 secreted by a new strain of Bacillus subtilis LjM2 against influenza A virus infection via direct cleavage of critical viral proteins, thus facilitates future biotechnological applications of Bacillus subtilis LjM2 and the protease CPAVM1.


Assuntos
Antivirais , Bacillus subtilis , Infecções por Orthomyxoviridae , Animais , Camundongos , Antivirais/farmacologia , Infecções por Orthomyxoviridae/virologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Peptídeo Hidrolases/metabolismo , Cães , Camundongos Endogâmicos BALB C , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Células Madin Darby de Rim Canino , Feminino , Proteínas de Bactérias/metabolismo
2.
Eur J Med Res ; 29(1): 322, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858682

RESUMO

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect individuals' social interactions, communication skills, and behavioral patterns, with significant individual differences and complex etiology. This article reviews the definition and characteristics of ASD, epidemiological profile, early research and diagnostic history, etiological studies, advances in diagnostic methods, therapeutic approaches and intervention strategies, social and educational integration, and future research directions. The highly heritable nature of ASD, the role of environmental factors, genetic-environmental interactions, and the need for individualized, integrated, and technology-driven treatment strategies are emphasized. Also discussed is the interaction of social policy with ASD research and the outlook for future research and treatment, including the promise of precision medicine and emerging biotechnology applications. The paper points out that despite the remarkable progress that has been made, there are still many challenges to the comprehensive understanding and effective treatment of ASD, and interdisciplinary and cross-cultural research and global collaboration are needed to further deepen the understanding of ASD and improve the quality of life of patients.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/terapia , Qualidade de Vida , Medicina de Precisão/métodos
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710518

RESUMO

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Assuntos
Anticorpos Monoclonais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Humanos , Células HEK293 , Hibridomas , Transfecção , Éxons , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Ensaio de Imunoadsorção Enzimática
4.
Biochem Biophys Res Commun ; 709: 149836, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564937

RESUMO

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células HeLa
5.
Heliyon ; 10(4): e26304, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384571

RESUMO

Objective: Dysregulation of the immune system plays a vital role in the pathological process of vascular dementia, and this study aims to spot critical biomarkers and immune infiltrations in vascular dementia employing a bioinformatics approach. Methods: We acquired gene expression profiles from the Gene Expression Database. The gene expression data were analyzed using the bioinformatics method to identify candidate immune-related central genes for the diagnosis of vascular dementia. and the diagnostic value of nomograms and Receiver Operating Characteristic (ROC) curves were evaluated. We also examined the role of the VaD hub genes. Using the database and potential therapeutic drugs, we predicted the miRNA and lncRNA controlling the Hub genes. Immune cell infiltration was initiated to examine immune cell dysregulation in vascular dementia. Results: 1321 immune genes were included in the combined immune dataset, and 2816 DEGs were examined in GSE122063. Twenty potential genes were found using differential gene analysis and co-expression network analysis. PPI network design and functional enrichment analysis were also done using the immune system as the main subject. To create the nomogram for evaluating the diagnostic value, four potential core genes were chosen by machine learning. All four putative center genes and nomograms have a solid diagnostic value (AUC ranged from 0.81 to 0.92). Their high confidence level became unquestionable by validating each of the four biomarkers using a different dataset. According to GeneMANIA and GSEA enrichment investigations, the pathophysiology of VaD is strongly related to inflammatory responses, drug reactions, and central nervous system degeneration. The data and Hub genes were used to construct a ceRNA network that includes three miRNAs, 90 lncRNA, and potential VaD therapeutics. Immune cells with varying dysregulation were also found. Conclusion: Using bioinformatic techniques, our research identified four immune-related candidate core genes (HMOX1, EBI3, CYBB, and CCR5). Our study confirms the role of these Hub genes in the onset and progression of VaD at the level of immune infiltration. It predicts potential RNA regulatory pathways control VaD progression, which may provide ideas for treating clinical disease.

6.
Phytomedicine ; 123: 155231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007992

RESUMO

BACKGROUND: The term "vascular cognitive impairment" (VCI) describes various cognitive conditions that include vascular elements. It increases the risk of morbidity and mortality in the elderly population and is the most common cognitive impairment associated with cerebrovascular disease. Understanding the etiology of VCI may aid in identifying approaches to target its possible therapy for the condition. Treatment of VCI has focused on vascular risk factors. There are no authorized conventional therapies available right now. The medications used to treat VCI are solely approved for symptomatic relief and are not intended to prevent or slow the development of VCI. PURPOSE: The function of Chinese medicine in treating VCI has not yet been thoroughly examined. This review evaluates the preclinical and limited clinical evidence to comprehend the "multi-component, multi-target, multi-pathway" mechanism of Traditional Chinese medicine (TCM). It investigates the various multi-omics approaches in the search for the pathological mechanisms of VCI, as well as the new research strategies, in the hopes of supplying supportive evidence for the clinical treatment of VCI. METHODS: This review used the Preferred Reporting Items for Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. Using integrated bioinformatics and network pharmacology approaches, a thorough evaluation and analysis of 25 preclinical studies published up to July 1, 2023, were conducted to shed light on the mechanisms of TCM for vascular cognitive impairment. The studies for the systematic review were located using the following databases: PubMed, Web of Science, Scopus, Cochrane, and ScienceDirect. RESULTS: We discovered that the multi-omics analysis approach would hasten the discovery of the role of TCM in the treatment of VCI. It will explore components, compounds, targets, and pathways, slowing the progression of VCI from the perspective of inhibiting oxidative stress, stifling neuroinflammation, increasing cerebral blood flow, and inhibiting iron deposition by a variety of molecular mechanisms, which have significant implications for the treatment of VCI. CONCLUSION: TCM is a valuable tool for developing dementia therapies, and further research is needed to determine how TCM components may affect the operation of the neurovascular unit. There are still some limitations, although several research have offered invaluable resources for searching for possible anti-dementia medicines and treatments. To gain new insights into the molecular mechanisms that precisely modulate the key molecules at different levels during pharmacological interventions-a prerequisite for comprehending the mechanism of action and determining the potential therapeutic value of the drugs-further research should employ more standardized experimental methods as well as more sophisticated science and technology. Given the results of this review, we advocate integrating chemical and biological component analysis approaches in future research on VCI to provide a more full and objective assessment of the standard of TCM. With the help of bioinformatics, a multi-omics analysis approach will hasten the discovery of the role of TCM in the treatment of VCI, which has significant implications for the treatment of VCI.


Assuntos
Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Multiômica , Idoso , Humanos , Transtornos Cognitivos/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/efeitos adversos , Farmacologia em Rede
7.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834180

RESUMO

Nonsyndromic biliary atresia (BA) is a rare polygenic disease, with autoimmunity, virus infection and inflammation thought to play roles in its pathogenesis. We conducted a genome-wide association study in 336 nonsyndromic BA infants and 8900 controls. Our results validated the association of rs17095355 in ADD3 with BA risk (odds ratio (OR) = 1.70, 95% confidence interval (95% CI) = 1.49-1.99; p = 4.07 × 10-11). An eQTL analysis revealed that the risk allele of rs17095355 was associated with increased expression of ADD3. Single-cell RNA-sequencing data and immunofluorescence analysis revealed that ADD3 was moderately expressed in cholangiocytes and weakly expressed in hepatocytes. Immuno-fluorescent staining showed abnormal deposition of ADD3 in the cytoplasm of BA hepatocytes. No ADD3 auto-antibody was observed in the plasma of BA infants. In the HLA gene region, no variants achieved genome-wide significance. HLA-DQB1 residue Ala57 is the most significant residue in the MHC region (OR = 1.44, 95% CI = 1.20-1.74; p = 1.23 × 10-4), and HLA-DQB1 was aberrantly expressed in the bile duct cells. GWAS stratified by cytomegalovirus (CMV) IgM status in 87 CMV IgM (+) BA cases versus 141 CMV IgM (-) BA cases did not yield genome-wide significant associations. These findings support the notion that common variants of ADD3 account for BA risk. The HLA genes might have a minimal role in the genetic predisposition of BA due to the weak association signal. CMV IgM (+) BA patients might not have different genetic risk factor profiles compared to CMV IgM (-) subtype.


Assuntos
Atresia Biliar , Infecções por Citomegalovirus , Antígenos HLA , Humanos , Lactente , Atresia Biliar/complicações , Atresia Biliar/genética , Atresia Biliar/patologia , Proteínas de Ligação a Calmodulina/metabolismo , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/imunologia , População do Leste Asiático , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Imunoglobulina M/metabolismo , Antígenos HLA/genética
8.
Discov Med ; 35(178): 861-867, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811624

RESUMO

BACKGROUND: Marein has been shown to possess therapeutic effects against diabetic retinopathy, but whether it can protect against high glucose (HG)-induced human retinal microvascular endothelial cell (HRMEC) injury remains unclear. Our study aimed to explore the effect of marein on HG-induced HRMEC injury and the mechanism underlying this purported therapeutic effect. METHODS: HRMEC was divided into normal glucose group, high glucose (HG) group, HG+marein low, medium and high (L, M, H) concentrations group, HG+pcDNA group, HG+pcDNA-small nucleolar RNA host gene 7 (SNHG7) group, HG+marein+si-negative control (NC) group, and HG+marein+si-SNHG7 group. Flow cytometry and Western blotting were performed to determine apoptosis rate and apoptosis-related protein levels. Superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) level and malondialdehyde (MDA) content were detected to assess cellular oxidative stress. SNHG7 expression was examined using real-time quantitative PCR. RESULTS: After treatment with low, medium and high concentrations of marein, apoptosis rate, Bax level, LDH level and MDA content were decreased, while B-cell lymphoma-2 (Bcl-2) level, SOD activity, and SNHG7 expression were promoted in HG-induced HRMEC injury in a concentration-dependent manner (p < 0.05). After overexpression of SNHG7, apoptosis rate, Bax level, LDH level and MDA content were decreased, while Bcl-2 level and SOD activity were enhanced in HG-induced HRMEC injury (p < 0.05). In contrast, SNHG7 knockdown reversed the effect of marein on HG-induced HRMEC injury. CONCLUSIONS: Marein could alleviate HG-induced HRMEC injury by up-regulating SNHG7 expression.


Assuntos
Células Endoteliais , Glucose , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Glucose/toxicidade , Apoptose , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
9.
Oncogenesis ; 12(1): 46, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735151

RESUMO

AIFM2 is a crucial NADH oxidase involved in the regulation of cytosolic NAD+. However, the role of AIFM2 in the progression of human cancers remains largely unexplored. Here, we elucidated the clinical implications, biological functions, and molecular mechanisms of AIFM2 in hepatocellular carcinoma (HCC). We found that AIFM2 is significantly upregulated in HCC, which is most probably caused by DNA hypomethylation and downregulation of miR-150-5p. High expression of AIFM2 is markedly associated with poor survival in patients with HCC. Knockdown of AIFM2 significantly impaired, while forced expression of AIFM2 enhanced the metastasis of HCC both in vitro and in vivo. Mechanistically, increased mitochondrial biogenesis and oxidative phosphorylation by activation of SIRT1/PGC-1α signaling contributed to the promotion of metastasis by AIFM2 in HCC. In conclusion, AIFM2 upregulation plays a crucial role in the promotion of HCC metastasis by activating SIRT1/PGC-1α signaling, which strongly suggests that AIFM2 could be targeted for the treatment of HCC.

10.
Anal Bioanal Chem ; 415(27): 6839-6850, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755490

RESUMO

The stable calcium (Ca) isotopes offer a minimally invasive method for assessing Ca balance in the body, providing a new avenue for research and clinical applications. In this study, we measured the Ca isotopic composition of soft tissues (brain, muscle, liver, and kidney), mineralized tissue (bone), and blood (plasma) from 10 mice (5 females and 5 males) with three different genetic backgrounds and same age (3 months old). The results reveal a distinctive Ca isotopic composition in different body compartments of mice, primally controlled by each compartment's unique Ca metabolism and genetic background, independent of sex. The bones are enriched in the lighter Ca isotopes (δ44/40Cabone = - 0.10 ± 0.55 ‰) compared to blood and other soft tissues, reflecting the preferential incorporation of lighter Ca isotopes through bone formation, while heavier Ca isotopes remain preferentially in blood. The brain and muscle are enriched in lighter Ca isotopes (δ44/40Cabrain = - 0.10 ± 0.53 ‰; δ44/40Camuscle = 0.19 ± 0.41 ‰) relative to blood and other soft tissues, making the brain the isotopically lightest soft tissues of the mouse body. In contrast, the kidney is enriched in heavier isotopes (δ44/40Cakidney = 0.86 ± 0.31 ‰) reflecting filtration and reabsorption by the kidney. This study provides important insight into the Ca isotopic composition of various body compartments and fluids.

11.
Eur J Clin Microbiol Infect Dis ; 42(10): 1195-1205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604947

RESUMO

PURPOSE: Highly active antiretroviral therapy (HAART) is an accepted treatment option for patients with virus infection. Mounting evidence indicated that persistent HAART treatment is implicated with increased morbidity of HIV-associated neurocognitive disorders (HAND) in patients. Tenofovir disoproxil fumarate (TDF), a novel nucleotide reverse transcriptase inhibitor (NRTI), was used in patients with HIV co-infected with HBV. And it is still a vital first-line antiretroviral compounds in HAART. However, whether persistent treatment with TDF is involved in HAND development remains to be further elucidated. In this study, we aimed to discuss the neurotoxicity of TDF. METHODS: We used SH-SY5Y cells and primary neuronal cells to evaluate the neurotoxicity of TDF in vitro. The cytotoxicity of TDF on SH-SY5Y cells and primary neuronal cells was evaluated by the cell viability and LDH levels by MTT assay and LDH kit, respectively. Hoechst 33342 staining, TUNEL assay and flow cytometry were performed to evaluate the cells apoptosis. The intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production were measured by commercial kits. In addition, the activation level of caspase-3 was evaluated using spectrophotometry and western blotting. RESULTS: Our results showed that TDF treatment significantly induced cell viability and induced apoptosis of SH-SY5Y cells and primary neuronal cells. Furthermore, the ROS levels and MDA productions were significantly up-regulated in nerve cells treated with TDF.  CONCLUSION: Our findings indicated that TDF may induce neuronal cell apoptosis through increasing the intracellular ROS and the expression level of caspase-3, which may be related to the increasing prevalence of HAND.


Assuntos
Neuroblastoma , Humanos , Tenofovir/toxicidade , Caspase 3 , Espécies Reativas de Oxigênio , Neurônios
12.
Aging (Albany NY) ; 15(15): 7673-7688, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552124

RESUMO

Diabetic kidney disease (DKD) poses a threat to people's health. The current treatments only provide partial relief of symptoms. Therefore, seeking a promising therapeutic medication for the prevention and control on DKD will benefit patients. Recently, a novel iron-dependent and non-apoptotic regulated mode of cell death, termed as ferroptosis, is expected to offer us a novel insight into the mechanism of DKD. We conducted experiments to investigate the role of ferroptosis in the development of DKD. Iron accumulation, weakened antioxidant capacity and ROS overproduction were observed in the renal tissues of STZ-induced diabetic rats. A persistent high glucose condition contributed to down regulated levels of Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11) which marked the occurrence of ferroptosis. Treatment of Emodin in DKD models could significantly attenuated these changes and reduced renal injury. Besides, NFE2-related factor 2 (Nrf2), an important antioxidant regulator, was inhibited in both in vivo and in vitro assay, which contributes to Reactive Oxygen Species (ROS) generation that further promoted the expression of ferroptosis related protein. These unwanted effects were offset by the intervention of Emodin. The specific Nrf2 knock out enhanced cell's sensitivity to ferroptosis by being exposed to high glucose culture, which was improved by treatment of Emodin via restoring activity of Nrf2. In conclusion, our research demonstrated that Emodin exerted renal protection against DKD via inhibiting ferroptosis and restoring Nrf2 mediated antioxidant capacity, which could be employed as a novel therapeutic medication against DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Emodina , Ferroptose , Animais , Ratos , Nefropatias Diabéticas/tratamento farmacológico , Emodina/farmacologia , Emodina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio , Glucose , Ferro
13.
PeerJ ; 11: e15735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576502

RESUMO

In recent years, the number of patients-particularly children-with autism spectrum disorder (ASD) has been continually increasing. ASD affects a child's language communication and social interaction to a certain extent and has an impact on behavior, intelligence level, and other aspects of the child. Data indicates that 40% to 70% of children with ASD experience language developmental delays, which are mainly manifested as lack of language or language developmental delay, self-talk, use of stereotyped language, parroting, et cetera. A language communication disorder is a major symptom of ASD and is the most common reason for patients to visit a doctor. Therefore, language intervention training and communication skills have been made a cornerstone of autism intervention. However, a literature search has revealed that most studies only examine certain intervention methods or a combination of two or three intervention methods, which cannot be used by therapists or rehabilitation teachers. Therefore, this article summarizes relevant literature on language communication training for ASD children at home and abroad and briefly introduces the characteristics and training methods of language disorders in children with ASD in order to provide some ideas and references for relevant researchers and practitioners.


Assuntos
Transtorno do Espectro Autista , Transtornos da Comunicação , Transtornos do Desenvolvimento da Linguagem , Humanos , Criança , Transtorno do Espectro Autista/complicações , Idioma , Comunicação , Transtornos da Comunicação/etiologia , Transtornos do Desenvolvimento da Linguagem/terapia
14.
Arch Gerontol Geriatr ; 115: 105113, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37418819

RESUMO

OBJECTIVE: Exercise helps enhance cognitive function in Alzheimer's patients, although the most effective forms of exercise remain unknown. METHODS: This network meta-analysis was registered in INPLASY (INPLASY202330066). According to predetermined criteria, this investigation comprised randomized controlled studies involving exercise therapies in people with Alzheimer's disease. The exercise intervention was ranked using surface under the cumulative ranking curve (SUCRA) and mean ranking, with the critical goal outcomes being overall cognition, executive function, and memory function. RESULTS: Resistance exercise is the most likely strategy to be beneficial for slowing down overall cognitive function loss in Alzheimer's patients (72.4%). Additionally, multi-component exercise was the most effective way to improve executive function (30.4%). The only type of exercise that significantly affects memory function is resistance exercise. Memory is the cognitive function that is least responsive to exercise. CONCLUSION: Resistance exercise may be an efficient intervention for overall cognitive function decline in patients with Alzheimer's and conjointly for their memory function. Multi-component exercise is more effective in improving executive function in patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/psicologia , Metanálise em Rede , Cognição , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/psicologia , Terapia por Exercício
15.
RSC Adv ; 13(26): 17959-17967, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323459

RESUMO

Visible-light-active 3D-TNAs@Ti-MOFs composite electrodes were fabricated by decorating nanoscaled Ti-based metal-organic frameworks on three-dimensional TiO2 nanotube arrays (3D-TNAs) prepared by a facile in situ solvothermal method. The photoelectrocatalytic performance of electrode materials was evaluated by degradation of tetracycline (TC) under visible light irradiation. The experiment results show that Ti-MOFs nanoparticles are highly distributed on the top and side walls of TiO2 nanotubes. The 3D-TNAs@NH2-MIL-125 solvothermally synthesized for 30 h exhibited the best photoelectrochemical performance compared with 3D-TNAs@MIL-125 and pristine 3D-TNAs. In order to further enhance the degradation efficiency of TC by 3D-TNAs@NH2-MIL-125, a photoelectro-Fenton (PEF) system was constructed. The influence of H2O2 concentration, solution pH and applied bias potential on TC degradation were explored. The results showed that when pH was 5.5, H2O2 concentration was 30 mM, and applied bias was 0.7 V, the degradation rate of TC was 24% higher than the pure photoelectrocatalytic degradation process. The enhanced photoelectro-Fenton performance of 3D-TNAs@NH2-MIL-125 could be attributed to the large specific surface area, excellent light utilization, efficient interfacial charge transfer, low electron-hole recombination rate and high production of ˙OH as the result of the synergistic effect between TiO2 nanotubes and NH2-MIL-125.

16.
Metallomics ; 15(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197928

RESUMO

Potassium (K) is an essential electrolyte for cellular functions in living organisms, and disturbances in K+ homeostasis could lead to various chronic diseases (e.g. hypertension, cardiac disease, diabetes, and bone health). However, little is known about the natural distribution of stable K isotopes in mammals and their application to investigate bodily homeostasis and/or as biomarkers for diseases. Here, we measured K isotopic compositions (δ41K, per mil deviation of 41K/39K from the NIST SRM 3141a standard) of brain, liver, kidney, and red blood cells (RBCs) from 10 mice (five females and five males) with three different genetic backgrounds. Our results reveal that different organs and RBCs have distinct K isotopic signatures. Specifically, the RBCs have heavy K isotopes enrichment with δ41K ranging from 0.67 to 0.08‰, while the brains show lighter K isotopic compositions with δ41K ranging from -1.13 to -0.09‰ compared to the livers (δ41K = -0.12 ± 0.58‰) and kidneys (δ41K = -0.24 ± 0.57‰). We found that the K isotopic and concentration variability is mostly controlled by the organs, with a minor effect of the genetic background and sex. Our study suggests that the K isotopic composition could be used as a biomarker for changes in K+ homeostasis and related diseases such as hypertension, cardiovascular, and neurodegenerative diseases.


Assuntos
Hipertensão , Potássio , Masculino , Feminino , Animais , Camundongos , Isótopos , Isótopos de Potássio , Eritrócitos , Mamíferos
17.
Front Genet ; 14: 1186882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255715

RESUMO

Background: Biliary atresia (BA) is a destructive, obliterative cholangiopathy characterized by progressive fibro-inflammatory disorder and obliteration of intra- and extrahepatic bile ducts. The Jagged1 (JAG1) gene mutations have been found in some isolated BA cases. We aim to explore the association of common variants in JAG1 with isolated BA risk in the Chinese Han population. Methods: We genotyped 31 tag single nucleotide polymorphisms covering the JAG1 gene region in 333 BA patients and 1,665 healthy controls from the Chinese population, and performed case-control association analysis. The expression patterns of JAG1 homologs were investigated in zebrafish embryos, and the roles of jag1a and jag1b in biliary development were examined by morpholino knockdown in zebrafish. Results: Single nucleotide polymorphisms rs6077861 [P Allelic = 1.74 × 10-4, odds ratio = 1.78, 95% confidence interval: 1.31-2.40] and rs3748478 (P Allelic = 5.77 × 10-4, odds ratio = 1.39, 95% confidence interval: 1.15-1.67) located in the intron region of JAG1 showed significant associations with BA susceptibility. The JAG1 homologs, jag1a and jag1b genes were expressed in the developing hepatobiliary duct of zebrafish, especially at 72 and 96 h postfertilization. Knockdown of both jag1a and jag1b led to poor biliary secretion, sparse intrahepatic bile duct network and smaller or no gallbladders compared with control embryos in the zebrafish model. Conclusion: Common genetic variants of JAG1 were associated with BA susceptibility. Knockdown of JAG1 homologs led to defective intrahepatic and extrahepatic bile ducts in zebrafish. These results suggest that JAG1 might be implicated in the etiology of BA.

18.
Nat Commun ; 14(1): 642, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746963

RESUMO

Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.


Assuntos
Vírus da Influenza A , Microbiota , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Acetatos/farmacologia , Antivirais
19.
J Biol Chem ; 299(3): 102990, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758802

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Humanos , SARS-CoV-2 , Histona Desacetilases/genética , Interferon Tipo I/farmacologia , Peptídeo Hidrolases , Mamíferos , Endorribonucleases , Transativadores
20.
Anal Chem ; 95(5): 2838-2847, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701391

RESUMO

Glutathione (GSH), the constituent of the redox buffer system, is a scavenger of reactive oxygen species (ROS), and its ratio to oxidized glutathione (GSSG) is a key indicator of oxidative stress in the cell. Acute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy characterized by aberrant levels of reduced and oxidized GSH due to oxidative stress. Therefore, the real-time, dynamic, and highly sensitive detection of GSH/GSSG in AML cells is of great interest for the clinical diagnosis and treatment of leukemia. The application of genetically encoded sensors to monitor GSH/GSSG levels in AML cells is not explored, and the underlying mechanism of how the drugs affect GSH/GSSG dynamics remains unclear. In this study, we developed subcellular compartment-specific sensors to monitor GSH/GSSG combined with high-resolution fluorescence microscopy that provides insights into basal GSH/GSSG levels in the cytosol, mitochondria, nucleus, and endoplasmic reticulum of AML cells, in a decreasing order, revealing substantial heterogeneity of GSH/GSSG level dynamics in different subcellular compartments. Further, we investigated the response of GSH/GSSG ratio in AML cells caused by Prussian blue and Fe3O4 nanoparticles, separately and in combination with cytarabine, pointing to steep gradients. Moreover, cytarabine and doxorubicin downregulated the GSH/GSSG levels in different subcellular compartments. Similarly, live-cell imaging showed a compartment-specific decrease in response to various drugs, such as CB-839, parthenolide (PTL), and piperlongumine (PLM). The enzymatic activity assay revealed the mechanism underlying fluctuations in GSH/GSSG levels in different subcellular compartments mediated by these drugs in the GSH metabolic pathway, suggesting some potential therapeutic targets in AML cells.


Assuntos
Técnicas Biossensoriais , Leucemia Mieloide Aguda , Humanos , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução , Leucemia Mieloide Aguda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...