Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298950

RESUMO

In this study, GC-IMS was used to analyze the volatile component and flavor profiles of Crassostrea gigas individuals of different ploidy and gender. Principal component analysis was used to explore overall differences in flavor profiles, and a total of 54 volatile compounds were identified. The total volatile flavor contents in the edible parts of tetraploid oysters were significantly higher than in diploid and triploid oysters. The concentrations of ethyl (E)-2-butenoate and 1-penten-3-ol were significantly higher in triploid oysters than in diploid and tetraploid oysters. In addition, the volatile compounds propanoic acid, ethyl propanoate, 1-butanol, butanal, and 2-ethyl furan were significantly higher in females than in males. The volatile compounds p-methyl anisole, 3-octanone, 3-octanone, and (E)-2-heptenal were present in higher levels in male than in female oysters. Overall, different ploidy and gender of oysters are connected with different sensory characteristics, providing new insights for understanding the flavor characteristics of oysters.


Assuntos
Crassostrea , Compostos Orgânicos Voláteis , Animais , Masculino , Feminino , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Tetraploidia , Triploidia , Ploidias , Compostos Orgânicos Voláteis/análise
2.
Front Microbiol ; 13: 963218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979484

RESUMO

H6-subtype avian influenza virus (AIV) was prevalent in the world and could sporadically infect humans. Here, a new chicken-derived H6N6-subtype AIV strain A/chicken/Zhejiang/49/2021 (ZJ49) was isolated in Zhejiang Province, China in 2021. Phylogenetic analysis by Maximum likelihood methods showed that H6-subtype AIVs were classed into 13 groups according to HA gene. The ZJ49 strain belonged to the G12 group, which mainly consisted of strains from Asian and dominated in recent years. Based on NA gene, H6-subtype AIVs were divided into N6.1 and N6.2 clades according to the NA gene. The ZJ49 isolate was located in the N6.2e clade, which mainly consisted of the H5N6-subtype AIVs. Phylogenetic analysis by Bayesian methods showed that the effective quantity size of H6-subtype AIVs increased around 1990, reached a peak around 2015, declined after 2015, then kept in a stable level after 2018. The reassortment analysis predicted that the PB2, PA, and NA genes of ZJ49 may recombine with H5-subtype AIVs. The amino acid at 222 position of HA gene of ZJ49 strain mutated from A to V, suggesting that ZJ49 has a potential ability to cross species barriers. The four glycosylation sites were highly conserved, implying less impact on the fold and conception of HA stem structure. Our results revealed the complicated evolution, reassortment, and mutations of receptor binding sites of H6-subtype AIVs, which emphasize the importance to continuously monitor the epidemiology and evolution of H6-subtype AIVs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35150972

RESUMO

Sperm storage in the female body is an important strategy in animal reproductive behavior. Amphioctopus fangsiao is an economically important cephalopod that has a sperm storage period of up to seven months. There are few studies concerning the mechanism of sperm storage in A. fangsiao. In this study, we performed transcriptome gene expression profiling of the oviductal glands at different phases (presence and absence of sperm storage). In total, 7943 differentially expressed genes (DEGs) comprising 4737 upregulated and 3206 downregulated genes were identified. GO and KEGG enrichment analyses were used to search for sperm storage-related genes. A protein interaction network was constructed to examine the interactions between genes. Nineteen genes associated with immunity, apoptosis, and autophagy were obtained and verified by qRT-PCR. This is the first comprehensive analysis of sperm storage-related genes in A. fangsiao. The results provide basic insights into the complex sperm storage mechanism of A. fangsiao.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica/métodos , Masculino , Análise em Microsséries , Mapas de Interação de Proteínas , Espermatozoides
4.
Fish Shellfish Immunol ; 117: 113-123, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333127

RESUMO

Protection via of the immune system is indispensable to the life of organisms. Within an immune network, problems with a given link will affect the normal life activities of the organism. Octopus ocellatus is cephalopod widely distributed throughout the world's oceans. Because of its unique nervous system and locomotive organs, research on this species has gradually increased in recent years. Many immune response mechanisms associated with behaviors of O. ocellatus are still unclear. Moreover, as a factor affecting the normal growth of O. ocellatus, egg protection has rarely been considered in previous behavioral studies. In this study, we analyzed the transcriptome profile of gene expression in O. ocellatus larvae, and identified 5936 differentially expressed genes (DEGs). GO and KEGG enrichment analyses were used to search for immune-related DEGs. Protein-protein interaction networks were constructed to examine the interactions between immune-related genes. Fifteen hub genes involved in multiple KEGG signaling pathways or with multiple protein-protein interaction relationships were obtained and verified by quantitative RT-PCR. We first studied the effects of egg protection on the immunity of O. ocellatus larvae by means of protein-protein interaction networks, and the results provide valuable genetic resources for understanding the immunity of invertebrate larvae. The data serve as a foundation for further research on the egg-protecting behavior of invertebrates.


Assuntos
Comportamento Animal , Octopodiformes/genética , Octopodiformes/imunologia , Óvulo , Animais , Feminino , Perfilação da Expressão Gênica , Larva/genética , Larva/imunologia , Mapas de Interação de Proteínas , Transcriptoma
5.
Front Physiol ; 12: 762681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069236

RESUMO

The metabolic processes of organisms are very complex. Each process is crucial and affects the growth, development, and reproduction of organisms. Metabolism-related mechanisms in Octopus ocellatus behaviors have not been widely studied. Brood-care is a common behavior in most organisms, which can improve the survival rate and constitution of larvae. Octopus ocellatus carried out this behavior, but it was rarely noticed by researchers before. In our study, 3,486 differentially expressed genes (DEGs) were identified based on transcriptome analysis of O. ocellatus. We identify metabolism-related DEGs using GO and KEGG enrichment analyses. Then, we construct protein-protein interaction networks to search the functional relationships between metabolism-related DEGs. Finally, we identified 10 hub genes related to multiple gene functions or involved in multiple signal pathways and verified them using quantitative real-time polymerase chain reaction (qRT-PCR). Protein-protein interaction networks were first used to study the effects of brood-care behavior on metabolism in the process of growing of O. ocellatus larvae, and the results provide us valuable genetic resources for understanding the metabolic processes of invertebrate larvae. The data lay a foundation for further study the brood-care behavior and metabolic mechanisms of invertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...