Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306442

RESUMO

Atractylodes lancea Thunb. DC (cangzhu) is a traditional Chinese medicinal plant (Cai et al., 2020). In June 2020, leaf spots were observed in A. lancea plants at the Chongqing Institute of Medicinal Plant Cultivation located in Nanchuan District, Chongqing, China (29°8'26.46″ N, 107°13'23'21″ E). Approximately 75% of the plants displayed leaf spot, partial leaf wilting, and stunted growth, and some plants died. To determine the cause of this disease, five typical leaf spots were cut into small pieces. The pieces were successively surface-disinfected with 0.5% NaClO for 1 min and 75% ethanol for 30 s, washed thrice with sterile water, and placed on potato dextrose agar (PDA) to incubate at 25 ℃. These isolates initially formed abundant white aerial mycelium, then gradually developed a rose pigmentation with a brownish color in the center and grayish rose at the periphery of the colony (Li et al. 2019). Mycelial tips were picked and placed on carnation leaf agar (CLA) and inoculated for 7 days. The macroconidia of the isolates were slender, distinctively curved in the bottom half of the apical cell, and sickle-shaped, with 3-4 septa. They ranged in size from 16.68-26.49 × 1.48-2.34 µm (n=50). The microconidia were fusiform with or without one septum. Their size ranged from 6.19-11.02 × 1.25-1.43 µm (n=50) (Li et al. 2019). The morphological characteristics of the isolates were consistent with those of Fusarium spp. PCR amplification and DNA sequencing of the internal transcribed spacer (ITS) region and ß-tubulin (TUB2) gene were performed using the primers ITS1/ITS4 (White et al. 1990) and Bt-2a/Bt-2b (Robideau et al. 2011), respectively. BLASTn analysis revealed that the ITS sequences of the isolates were 100% identical to those of the F. acuminatum isolates from the Fusarium MLST database (http://isolate.fusariumdb.org/guide.php). Further analysis revealed that the TUB2 sequences were 99.14% identical to those of the F. acuminatum strain S16 isolates (MF662644) from the GeneBank database of the NCBI server. Based on the morphology and sequence analyses, the isolates were identified as F. acuminatum. Pathogenicity tests were conducted on 1.5-year-old A. lancea plants by inoculating spore suspensions under greenhouse conditions (25°C). For this, wound were made on leaves by piercing with sterilized toothpicks. 30 µl of spore suspension containing 2 × 106 conidia/ml was placed on each wound. Wounds on the leaves of control plants were inoculated with 10 µl of sterile distilled water. There were three plants for each treatment. After incubation at 25 °C for 5 days in a greenhouse, the leaves of the treated plants all showed partial wilting, consistent with the field observations. No symptoms were observed in controlled plants. The fungi were again isolated from the symptomatic tissues and were identical to the original isolate. The experiment was repeated twice with similar results. Pathogenicity symptoms were similar to what was first observed in the field and the isolated fungi were verified based on morphological characteristics, thus fulfilling Koch's postulate. To the best of our knowledge, this is the first time that A. lancea leaf spot caused by F. acuminatum has been discovered in China. The leaf spot caused by F. acuminatum on A. lancea has serious yield loss, and proper control measures should be applied.

2.
Plant Dis ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040221

RESUMO

Sambucus chinensis, belonging to the Caprifoliaceae family, is an economically large herb plant that is widely cultivated in southern China for its good ornamental characteristics, edible properties, and medicinal values. In July 2021, symptoms of leaf spot were observed on Sambucus chinensis plants in two fields of Chongqing Medicinal Botanical Garden (29º8'26" N, 107º13'23" E) in Nanchuan city, Chongqing, China. Disease incidence was approximately 35 and 50% for each field. The symptoms were initially yellow or black irregular spots on leaves, and then increased to larger dark brown lesions. Finally, the entire infected leaf was blighted, withering, curl and abscission. Ten blight leaves were randomly sampled from fields. Tissues were cut into small pieces and surface sterilized with 75% ethanol for 30 s and sterilized in 2% sodium hypochlorite for 2 min, rinsed thrice with sterile distilled water, plated on potato dextrose agar (PDA) plates, and incubated at 25°C for 7 days in the dark. Later, 20 isolates were obtained from the infected leaves and had similar characteristics. Three isolates were randomly selected (CQ81, CQ82, CQ83) for the further study. Colonies on PDA were olive-green to brown with a velvety texture. Conidia (n=30) were pale- to olive-brown, smooth to verruculose and produced in long, branched chains which were easily disarticulate, single celled, and elliptical to limoniform, and measured as 2.51~4.29 × 1.63~2.14 µm. Conidiophores were solitary, straight or flexous, often unbranched. The DNA of three isolates were extracted and the internal transcribed spacer (ITS) region and translation elongation factor 1-alpha (TEF1-α) were sequenced using primer pairs ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone and Kohn 1999), respectively. The sequences of three isolates were 100% identical, and one representative isolate CQ82 were deposited in GenBank (ON387641, ITS; and ON409522, TEF). BLASTn analysis of these sequences showed 99 to 100% nucleotide identity with the sequences of C. cladosporioides CPC 14705 in Korea (Bensch et al. 2010). Phylogenetic analysis using Neighbor-joining method and concatenated sequences (ITS +TEF1) with MEGA7 placed isolate CQ82 in C. cladosporioides with 99% bootstrap support. On the basis of morphological and molecular characteristics, the isolates were identified as C. cladosporioides (Bensch et al. 2010; Nam et al. 2015). A total of sixteen healthy potted plants of S. chinensis were conducted for the pathogenicity test. Eight plants were selected and one shoot of each plant was randomly used for inoculation. Leaves from the shoot of each plant were brushed with 106 conidia/ml suspension of isolate CQ82. Another 8 plants were performed in the same procedure, inoculated with sterile distilled water as control. All plants were covered with plastic bags for two days and then arranged in a greenhouse with 80% relative humidity at 25°C. The pathogenicity test was repeated thrice. After 15 days inoculation, the similar symptoms were observed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from blight tissue and identified as C. cladosporioides by the methods described above. Although this fungus was previously reported to cause leaf disease on many plants (Meneses et al. 2018; Sun et al. 2017), this is the first report of C. cladosporioides causing leaf blight on S. chinensis in China. This study will establish a foundation for controlling the disease.

3.
J Plant Physiol ; 264: 153483, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34371311

RESUMO

Tomato plants are susceptible to drought stress, but the mechanism involved in this process still remains poorly understood. In the present study, we demonstrated that SlNAC6, a nuclear-localized protein induced by exogenous abscisic acid (ABA) or polyethylene glycol (PEG) stress treatment, plays a positive role in tomato plant response to PEG stress. Down-regulation of SlNAC6 (SlNAC6-RNAi) resulted in a semidwarf phenotype, and the SlNAC6-RNAi lines showed reduced tolerance to PEG stress, exhibiting a higher water loss rate and degree of oxidative damage, as well as lower values of proline content and antioxidant enzyme activity, when compared with those in wild type (WT). In contrast, overexpression of SlNAC6 (SlNAC6-OE) leads to a significant delay of growth, and the SlNAC6-OE lines showed greatly enhanced tolerance to PEG stress concomitant with a lower water loss rate and degree of oxidative damage, as well as higher values of proline content and antioxidant enzyme activity. Further study showed that the transcription level of ABA signaling-related genes and the ABA content are respectively decreased or increased in SlNAC6-RNAi and SlNAC6-OE seedlings, as verified by multiple physiological parameters, such as stomatal conductance, water loss rate, seed germination, and root length. Moreover, overexpression of SlNAC6 can accelerate tomato fruit ripening. Collectively, this study demonstrates SlNAC6 exerts important roles in tomato development, drought stress response, and fruit ripening processes, some of them perhaps partly through modulating an ABA-mediated pathway, which implies SlNAC6 may hold the potential applications in improving agronomic traits of tomato or other Solanaceae crops.


Assuntos
Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Plant Sci ; 12: 644597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936131

RESUMO

Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...