Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 57: e13409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958367

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.


Assuntos
Adjuvantes Imunológicos , Modelos Animais de Doenças , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Animais , Adjuvantes Imunológicos/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Mycobacterium tuberculosis/imunologia , Camundongos , Feminino , Antígenos de Bactérias/imunologia , Aciltransferases/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Proteínas de Bactérias/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Tuberculose Latente/imunologia , Camundongos Endogâmicos BALB C , Administração Intranasal
2.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4085-4097, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877392

RESUMO

To prepare a lipid nanoparticle (LNP)-based subunit vaccine of Mycobacterium tuberculosis (Mtb) antigen EsxV and study its immunological characteristics, the LNP containing EsxV and c-di-AMP (EsxV: C: L) was prepared by thin film dispersion method, and its encapsulation rate, LNP morphology, particle size, surface charge and polyphase dispersion index were measured. BALB/c mice were immunized with EsxV: C: L by nasal drops. The levels of serum and mucosal antibodies, transcription and secretion of cytokines in lung and spleen, and the proportion of T cell subsets were detected after immunization. EsxV: C: L LNPs were obtained with uniform size and they were spherical and negatively charged. Compared with EsxV: C immunization, EsxV: C: L mucosal inoculation induced increased sIgA level in respiratory tract mucosa. Levels of IL-2 secreted from spleen and ratios of memory T cells and tissue-resident T cells in mice were also elevated. In conclusion, EsxV: C: L could induce stronger mucosal immunity and memory T cell immune responses, which may provide better protection against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Nanopartículas , Animais , Camundongos , Antígenos de Bactérias , Imunização , Vacinas de Subunidades Antigênicas , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...