Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871922

RESUMO

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

2.
Acta Pharmacol Sin ; 45(3): 490-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935896

RESUMO

Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17ß-estradiol, and both compounds do activate estrogen receptors Erα and Erß with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erß to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.


Assuntos
Estrenos , Receptor alfa de Estrogênio , Bainha de Mielina , Pirrolidinonas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...