Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 189(2): 287-300, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35913497

RESUMO

Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM-exposed mice and AS mice models, including high-fat diet-fed mice and apolipoprotein E-deficient mice. The in vitro model further defined the dose-dependent response of PM treatment on foam cell formation. Interestingly, airborne magnetite NPs rather than nonmagnetic NPs at the same concentration were demonstrated to be the key toxic component of PM in the promoted foam cell formation. Furthermore, magnetite NPs exposure led to abnormal cholesterol accumulation in macrophages, which was attributed to the attenuation of cholesterol efflux and enhancement of lipoprotein uptake, but independent of cholesterol esterification. The in-depth data revealed that magnetite NPs accelerated the protein ubiquitination and subsequent degradation of SR-B1, a crucial transporter of cholesterol efflux. Collectively, these findings for the first time identified magnetite NPs as one key toxic component of PM-promoted foam cell formation, and provided new insight of abnormal cholesterol metabolism into the pathogenesis of PM-induced AS.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Colesterol/metabolismo , Óxido Ferroso-Férrico/metabolismo , Células Espumosas/patologia , Homeostase , Humanos , Lipoproteínas LDL/metabolismo , Nanopartículas de Magnetita/toxicidade , Camundongos , Material Particulado/metabolismo , Material Particulado/toxicidade
2.
J Breath Res ; 16(4)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35772384

RESUMO

Whether tobacco smoking affects the occurrence and development of coronavirus disease 2019 (COVID-19) is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e. smoking status, COVID-19 status, and basic information of population) from human serum proteomic and metabolomic levels were established by literature search. Bioinformatics analysis was then performed to analyze the interactions of proteins or metabolites among the above three databases and their biological effects. Potential confounding factors (age, body mass index (BMI), and gender) were controlled to improve the reliability. The obtained data indicated that smoking may increase the relative risk of conversion from non-severe to severe COVID-19 patients by inducing the dysfunctional immune response. Seven interacting proteins (C8A, LBP, FCN2, CRP, SAA1, SAA2, and VTN) were found to promote the deterioration of COVID-19 by stimulating the complement pathway and macrophage phagocytosis as well as inhibiting the associated negative regulatory pathways, which can be biomarkers to reflect and predict adverse outcomes in smoking COVID-19 patients. Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. Our study provides novel evidence and corresponding biomarkers as potential predictors of severe disease progression in smoking COVID-19 patients, which is of great significance for preventing further deterioration in these patients.


Assuntos
COVID-19 , Proteômica , Biomarcadores/metabolismo , Testes Respiratórios , Humanos , Metabolômica , Reprodutibilidade dos Testes , Fumar/efeitos adversos , Fumar Tabaco
3.
Environ Pollut ; 300: 118937, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114305

RESUMO

Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM2.5) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM2.5 led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM2.5-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from ß-oxidation to glycolysis had a critical role in the PM2.5-increased myocardial hypoxia injury. The in-depth analysis delineated that PM2.5 exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM2.5, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.


Assuntos
Isquemia Miocárdica , Animais , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos , Isquemia Miocárdica/induzido quimicamente , Miocárdio/metabolismo , Oxigênio , Pró-Colágeno-Prolina Dioxigenase/metabolismo
4.
Environ Sci Technol ; 56(3): 1854-1863, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35049283

RESUMO

Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.


Assuntos
COVID-19 , Receptores Virais , Enzima de Conversão de Angiotensina 2 , Poluentes Ambientais , Humanos , RNA Mensageiro , SARS-CoV-2
5.
Part Fibre Toxicol ; 18(1): 36, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565395

RESUMO

BACKGROUND: Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration. RESULTS: At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the mitochondrial response to low-dose NPs. CONCLUSION: Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to better evaluation of nanomaterials biosafety.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/toxicidade , Mitocôndrias , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...