Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 99(27): e20964, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32629705

RESUMO

Intraoperative radiotherapy (IORT) has been used to treat different residual solid tumors after tumor removal and has shown many advantages over other treatment methods. However, the use of IORT for invasive thymoma has not been reported. Therefore, in this study, we tried to determine the safety and efficacy of INTRABEAM IORT for the treatment of invasive thymoma.Among the patients admitted to our hospital from September to December 2016 who were diagnosed with invasive thymoma, 14 were selected as study subjects. With medical histories taken beforehand, 8 of these patients were diagnosed with Masaoka stage IIA and 6 with Masaoka stage IIB; furthermore, 5 of the patients were diagnosed with myasthenia gravis (MG). INTRABEAM radiation (8-10 Gy, low energy) was delivered to the postoperative tumor bed of each patient during surgery. The intra- and postoperative complications were observed and evaluated, and the improvement in symptoms was assessed. An additional 23 patients with stage II thymoma undergoing radical surgery from April to August 2016 were chosen as the control group.One month after the operation, only 1 patient in the IORT group had cough, increased levels of leucocytes and neutrophils, and pulmonary inflammation on chest computed tomography. Reactive inflammation and pleural effusion in the 2 groups were similar (P > .05). There was no significant difference between the 2 groups in the improvement of myasthenia gravis (P > .05). Postoperative chest computed tomography and routine blood examination at 3 and 12 months showed that all the patients recovered, with normal hemogram levels and no pulmonary fibrosis around the radiation field. In addition, ultrasonic cardiography and electrocardiography demonstrated no significant difference before or after surgery within the IORT group. At the end of the follow-up, all the patients were alive, no relapse or remote metastasis was observed in the IORT group, and 2 inpatients in the control group had experienced relapse at 24 and 26 months. There was a significant difference in disease-free survival between the 2 groups (P = .00).It is safe to administer low-energy INTRABEAM IORT at a dose of approximately 10 Gy in patients with stage II invasive thymoma. INTRABEAM IORT does not significantly increase operation- or radiation-related complications and has no significant effect on vital organs such as the lungs and heart. Its long-term efficacy is worth expecting.


Assuntos
Timoma/radioterapia , Neoplasias do Timo/radioterapia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/complicações , Dosagem Radioterapêutica , Radioterapia Adjuvante/instrumentação , Radioterapia Adjuvante/métodos , Cirurgia Torácica Vídeoassistida/métodos , Timoma/complicações , Timoma/patologia , Timoma/cirurgia , Neoplasias do Timo/complicações , Neoplasias do Timo/patologia , Neoplasias do Timo/cirurgia
2.
Oncol Lett ; 15(4): 5634-5642, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29556300

RESUMO

The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...