Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 13562-13573, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859323

RESUMO

We propose a method for simulating a 1D non-Hermitian Su-Schrieffer-Heeger model with modulated nonreciprocal hopping using a cyclic three-mode optical system. The current system exhibits different localization of topologically nontrivial phases, which can be characterized by the winding number. We find that the eigenenergies of such a system undergo a real-complex transition as the nonreciprocal hopping changes, accompanied by a non-Bloch parity-time symmetry breaking. We explain this phase transition by considering the evolution of saddle points on the complex energy plan and the ratio of complex eigenenergies. Additionally, we demonstrate that the skin states resulting from the non-Hermitian skin effect possess higher-order exceptional points under the critical point of the non-Bloch parity-time phase transition. Furthermore, we investigate the non-Hermitian skin phase transition by the directional mean inverse participation ratio and the generalized Brillouin zone. This work provides an alternative way to investigate the novel topological and non-Hermitian effects in nonreciprocal optical systems.

2.
Opt Express ; 28(24): 37026-37039, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379784

RESUMO

We investigate the localized photonic states and dynamic process in one-dimensional nonreciprocal coupled Su-Schrieffer-Heeger chain. Through numerical calculation of energy eigenvalue spectrum and state distributions of the system, we find that different localized photonic states with special energy eigenvalues can be induced by the nonreciprocal coupling, such as zero-energy edge states, interface states and bound states with pure imaginary energy eigenvalues. Moreover, we analyze the dynamic process of photonic states in such non-Hermitian system. Interestingly, it is shown that the nonreciprocal coupling has an evident gathering effect on the photons, which also break the trapping effect of topologically protected edge states. In addition, we consider the impacts of on-site defect potentials on the dynamic process of photonic states for the system. It is indicated that the photons go around the defect lattice site and still present the gathering effect, and different forms of laser pulses can be induced with the on-site defect potentials in different lattice sites. Furthermore, we present the method for the quantum simulation of current model based on the circuit quantum electrodynamic lattice.

3.
Opt Express ; 28(9): 13532-13541, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403825

RESUMO

We investigate the quantum walks of a single particle in a one-dimensional periodically kicked circuit quantum electrodynamics lattice. It is found that the dynamic process of the quantum walker is affected by the strength of incommensurate potentials and the driven periods of the system. We calculate the mean square displacement to illustrate the dynamic properties of the quantum walks, which shows that the localized process of the quantum walker presents the zero power-law index distribution. By calculating the mean information entropy, we find that the next-nearest-neighbor interactions have a remarkable deviation effects on the quantum walks and make a more stricter parameter condition for the localization of the quantum walker. Moreover, assisted by the lattice-based cavity input-output process, the localized features of circuit quantum electrodynamics lattice can be observed by measuring the average photon number of the cavity field in the steady state.

4.
Opt Express ; 26(13): 16250-16264, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119459

RESUMO

Experimental realization of the Kitaev model is a greatly attractive topic due to the potential applications to build robust qubits against decoherence in topological quantum computation. In this work, we investigate the charged whispering-gallery microcavity array model and simulate the normal Kitaev chain under this mechanism in the first time. We find that the system reveals profound connections with the normal Kitaev chain and its some derivatives, and the topological property of the system depends on effective optomechanical coupling strength deeply. In optomechanically induced Kitaev topologically nontrivial phase, compared to the normal Kitaev chain in the Majorana basis, the novel and distinct structure of charged whispering-gallery microcavity array model leads to controllable photonic and phononic edge localization. Furthermore, we also simulate the extended Kitaev chain and show that two topologically different nontrivial phases of the system allow one to realize more freewheeling controllable photonic and phononic edge localization. Our model offers an alternative approach to correlate with other more complicated one-dimensional noninteracting spinless topological systems relevant to the p-wave superconducting pairing.

5.
Opt Express ; 24(14): 15319-27, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410808

RESUMO

We propose a specific method for converting a four-photon Greenberger-Horne-Zeilinger (GHZ) state to a W state in a deterministic way by using linear optical elements, cross-Kerr nonlinearities, and homodyne measurement. We consider the effects of the quadrature homodyne measurements on the fidelity of the W state and the experimental feasibility of the proposed scheme. This might provide great prospects for converting multipartite entangled states into each other for future optical quantum information processing (QIP).

6.
Sci Rep ; 5: 11321, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26225781

RESUMO

Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...