Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 178: 106472, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38936112

RESUMO

Reinforcement learning aided by the skill conception exhibits potent capabilities in guiding autonomous agents toward acquiring meaningful behaviors. However, in the current landscape of reinforcement learning, a skill is often merely a rudimentary abstraction of a sequence of primitive actions, serving as a component of the input to policy networks with fixed network parameters. This rigid methodology presents obstacles when attempting to integrate with burgeoning techniques such as meta-learning and large language models. To address this issue, we introduce a unique neural skill representation that abstracts the activation of neurons in each neural layer. Based on this, a novel end-to-end robotic reinforcement learning algorithm is proposed, in which two sub-networks, i.e., generator and worker networks, implement collaborative inferences via neural skills. Specifically, the generator produces a series of multi-spatial neural skills, providing efficient guidance for subsequent decision-making; by integrating these skills, the worker can determine its own network weights and biases to cope with various environmental conditions. Therefore, actions can be sampled with flexibly changeable network parameters through the collaboration between generator and worker networks. The experiments demonstrate that GeneWorker can achieve a mean success rate of over 90.67% on continuous robotic tasks and outperforms previous state-of-the-art methods by a minimum of 54% on the pick-and-place task.

2.
Opt Express ; 32(8): 13562-13573, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859323

RESUMO

We propose a method for simulating a 1D non-Hermitian Su-Schrieffer-Heeger model with modulated nonreciprocal hopping using a cyclic three-mode optical system. The current system exhibits different localization of topologically nontrivial phases, which can be characterized by the winding number. We find that the eigenenergies of such a system undergo a real-complex transition as the nonreciprocal hopping changes, accompanied by a non-Bloch parity-time symmetry breaking. We explain this phase transition by considering the evolution of saddle points on the complex energy plan and the ratio of complex eigenenergies. Additionally, we demonstrate that the skin states resulting from the non-Hermitian skin effect possess higher-order exceptional points under the critical point of the non-Bloch parity-time phase transition. Furthermore, we investigate the non-Hermitian skin phase transition by the directional mean inverse participation ratio and the generalized Brillouin zone. This work provides an alternative way to investigate the novel topological and non-Hermitian effects in nonreciprocal optical systems.

3.
Front Cell Dev Biol ; 9: 674939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277616

RESUMO

During the process of vertebrate evolution, many thermogenic organs and mechanisms have appeared. Mammalian brown adipose tissue (BAT) generates heat through the uncoupling oxidative phosphorylation of mitochondria, acts as a natural defense against hypothermia and inhibits the development of obesity. Although the existence, cellular origin and molecular identity of BAT in humans have been well studied, the genetic and functional characteristics of BAT from lampreys remain unknown. Here, we identified and characterized a novel, naturally existing brown-like adipocytes at the lamprey brain periphery. Similar to human BAT, the lamprey brain periphery contains brown-like adipocytes that maintain the same morphology as human brown adipocytes, containing multilocular lipid droplets and high mitochondrion numbers. Furthermore, we found that brown-like adipocytes in the periphery of lamprey brains responded to thermogenic reagent treatment and cold exposure and that lamprey UCP2 promoted precursor adipocyte differentiation. Molecular mapping by RNA-sequencing showed that inflammation in brown-like adipocytes treated with LPS and 25HC was enhanced compared to controls. The results of this study provide new evidence for human BAT research and demonstrate the multilocular adipose cell functions of lampreys, including: (1) providing material energy and protecting structure, (2) generating additional heat and contributing to adaptation to low-temperature environments, and (3) resisting external pathogens.

4.
Opt Express ; 28(24): 37026-37039, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379784

RESUMO

We investigate the localized photonic states and dynamic process in one-dimensional nonreciprocal coupled Su-Schrieffer-Heeger chain. Through numerical calculation of energy eigenvalue spectrum and state distributions of the system, we find that different localized photonic states with special energy eigenvalues can be induced by the nonreciprocal coupling, such as zero-energy edge states, interface states and bound states with pure imaginary energy eigenvalues. Moreover, we analyze the dynamic process of photonic states in such non-Hermitian system. Interestingly, it is shown that the nonreciprocal coupling has an evident gathering effect on the photons, which also break the trapping effect of topologically protected edge states. In addition, we consider the impacts of on-site defect potentials on the dynamic process of photonic states for the system. It is indicated that the photons go around the defect lattice site and still present the gathering effect, and different forms of laser pulses can be induced with the on-site defect potentials in different lattice sites. Furthermore, we present the method for the quantum simulation of current model based on the circuit quantum electrodynamic lattice.

5.
Opt Express ; 28(9): 13532-13541, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403825

RESUMO

We investigate the quantum walks of a single particle in a one-dimensional periodically kicked circuit quantum electrodynamics lattice. It is found that the dynamic process of the quantum walker is affected by the strength of incommensurate potentials and the driven periods of the system. We calculate the mean square displacement to illustrate the dynamic properties of the quantum walks, which shows that the localized process of the quantum walker presents the zero power-law index distribution. By calculating the mean information entropy, we find that the next-nearest-neighbor interactions have a remarkable deviation effects on the quantum walks and make a more stricter parameter condition for the localization of the quantum walker. Moreover, assisted by the lattice-based cavity input-output process, the localized features of circuit quantum electrodynamics lattice can be observed by measuring the average photon number of the cavity field in the steady state.

6.
Opt Express ; 26(13): 16250-16264, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119459

RESUMO

Experimental realization of the Kitaev model is a greatly attractive topic due to the potential applications to build robust qubits against decoherence in topological quantum computation. In this work, we investigate the charged whispering-gallery microcavity array model and simulate the normal Kitaev chain under this mechanism in the first time. We find that the system reveals profound connections with the normal Kitaev chain and its some derivatives, and the topological property of the system depends on effective optomechanical coupling strength deeply. In optomechanically induced Kitaev topologically nontrivial phase, compared to the normal Kitaev chain in the Majorana basis, the novel and distinct structure of charged whispering-gallery microcavity array model leads to controllable photonic and phononic edge localization. Furthermore, we also simulate the extended Kitaev chain and show that two topologically different nontrivial phases of the system allow one to realize more freewheeling controllable photonic and phononic edge localization. Our model offers an alternative approach to correlate with other more complicated one-dimensional noninteracting spinless topological systems relevant to the p-wave superconducting pairing.

7.
J Exp Bot ; 68(9): 2259-2274, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472326

RESUMO

Molecular and cytological mechanisms concerning the effects of nitrogen on wheat (Triticum aestivum L.) storage protein biosynthesis and protein body development remain largely elusive. We used transcriptome sequencing, proteomics techniques, and light microscopy to investigate these issues. In total, 2585 differentially expressed genes (DEGs) and 57 differentially expressed proteins (DEPs) were found 7 days after anthesis (DAA), and 2456 DEGs and 64 DEPs were detected 18 DAA after nitrogen treatment. Gene ontology terms related to protein biosynthesis processes enriched these numbers by 678 and 582 DEGs at 7 and 18 DAA, respectively. Further, 25 Kyoto Encyclopedia of Genes and Genomes pathways were involved in protein biosynthesis at both 7 and 18 DAA. DEPs related to storage protein biosynthesis contained gliadin and glutenin subunits, most of which were up-regulated after nitrogen treatment. Quantitative real-time PCR analysis indicated that some gliadin and glutenin subunit encoding genes were differentially expressed at 18 DAA. Structural observation revealed that wheat endosperm accumulated more and larger protein bodies after nitrogen treatment. Collectively, our findings suggest that nitrogen treatment enhances storage protein content, endosperm protein body quantity, and partial processing quality by altering the expression levels of certain genes involved in protein biosynthesis pathways and storage protein expression at the proteomics level.


Assuntos
Gliadina/biossíntese , Glutens/biossíntese , Nitrogênio/metabolismo , Biossíntese de Proteínas , Triticum/metabolismo , Sementes/metabolismo
8.
Opt Express ; 24(14): 15319-27, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410808

RESUMO

We propose a specific method for converting a four-photon Greenberger-Horne-Zeilinger (GHZ) state to a W state in a deterministic way by using linear optical elements, cross-Kerr nonlinearities, and homodyne measurement. We consider the effects of the quadrature homodyne measurements on the fidelity of the W state and the experimental feasibility of the proposed scheme. This might provide great prospects for converting multipartite entangled states into each other for future optical quantum information processing (QIP).

9.
Sci Rep ; 5: 11321, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26225781

RESUMO

Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...