Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(45): 68320-68331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35536467

RESUMO

The separation of magnetic adsorbents from aqueous solutions is made simple by using an external magnetic field. Herein, magnetic Zr(IV)-ethylenediamine tetramethylene phosphonic acid (EDTMPA) hybrids (MZrOP-x-T, x, and T were the different quality of Fe3O4@C and temperature in the synthesis process, respectively). A study was conducted on the uses of MZrOP-x-T in the capture of U(VI). The influences of pH, adsorption period, initial concentration, and temperature were all investigated. Furthermore, the desorption and reusability of the materials were explored. The optimal values of x and T were 0.2 g and 100 °C, respectively. At 298.15 K, the maximum adsorption capacity of MZrOP-0.2-100 was 330.30 mg·g-1. The current research demonstrates that MZrOP-0.2-100 is a potentially effective material in removing U(VI) from radioactive solution.

2.
Nanoscale Res Lett ; 6(1): 200, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21711753

RESUMO

Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA