Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Protein Expr Purif ; 225: 106597, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39233018

RESUMO

A trypsin affinity material was prepared by covalently immobilizing buckwheat trypsin inhibitor (BTI) on epichlorohydrin-activated cross-linked agarose gel (Selfinose CL 6 B). The optimal conditions for activating Selfinose CL 6 B were 15 % epichlorohydrin and 0.8 M NaOH at 40 °C for 2 h. The optimal pH for immobilizing BTI was 9.5. BTI-Sefinose CL 6 B showed a maximum adsorption capacity of 2.25 mg trypsin/(g support). The material also displayed good reusability, retaining over 90 % of its initial adsorption capacity after 30 cycles. High-purity trypsin was obtained from locust homogenate using BTI-Selfinose CL 6 B through one-step affinity chromatography. The molecular mass and Km value of locust trypsin were determined as 27 kDa and 0.241 mM using N-benzoyl-DL-arginine-nitroanilide as substrate. The optimal temperature and pH of trypsin activity were 55 °C and 9.0, respectively. The enzyme exhibited good stability in the temperature range of 30-50 °C and pH range of 4.0-10.0. BTI-Selfinose CL 6 B demonstrates potential application in the preparation of high-purity trypsin and the discovery of more novel trypsin from various species.


Assuntos
Cromatografia de Afinidade , Proteínas Recombinantes , Inibidores da Tripsina , Tripsina , Tripsina/química , Tripsina/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Cromatografia de Afinidade/métodos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Fagopyrum/química , Temperatura , Sefarose/química , Estabilidade Enzimática
2.
Food Chem ; 463(Pt 3): 141250, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39305637

RESUMO

Myricetin (MYR) is a flavonoid with favorable biological activities. In this study, MYR oxidation products (MYRox) were generated through enzymatic oxidation of MYR using horseradish peroxidase. The results showed enzymatic oxidation enhanced the water solubility and antibacterial activity against Staphylococcus aureus (S. aureus) of MYR. Further experiments showed the antibacterial effects of MYRox were conferred by MYR organic phase oxidation products (MYRoo). Both MYR and MYRoo could disrupt the cell membrane integrity, bind to the genomic DNA, affect protein synthesis and degradation, and alter the ROS levels in S. aureus. However, they exerted these effects with different strengths and ways. Finally, MYR or MYRoo can be used as an inhibitor against S. aureus in the cabbage food system, with MYRoo having better effect. This study demonstrated that enzymatic oxidation is an effective approach to improve the water solubility and antibacterial activity of MYR, enhancing its potential application in food preservation.

3.
Protein Pept Lett ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323332

RESUMO

BACKGROUND: Different inhibitor families have their own conserved three-dimensional structures, but how these structures determine whether a protein can become an inhibitor is still unknown. The buckwheat trypsin inhibitor (BTI) pertains to the Potato I type inhibitor family, which is a simple and essential bio-molecule that serves as a model for the investigation of protease-inhibitor interaction. OBJECTIVE: To: study the effects of mutations at Trp10 and Ile25 in the hydrophobic cavity(scaffold) of rBTI on its inhibitory activity and stability. METHODS: A site-directed mutagenesis and molecular modeling were performed using the sequence of BTI. The hydrogen bonds formed by all amino acids and conformational differences of Trp53 were analyzed in the tertiary structures of rBTI and mutants. RESULTS: Mutant rBTI-W10A almost completely lost its inhibitory activity (retaining 10%), while rBTI-I25A retained about 50% of its inhibitory activity. Both rBTI-W10A and rBTI-I25A could be degraded by trypsin. The hydrogen bond analysis results showed that mutating Trp10 or Ile25 weakened the specific cohesion interactions in the hydrophobic core of rBTI, disrupting the tight hydrogen bond network in the cavity. This further led to difficulty in maintaining the binding loop conformation, ultimately causing the Trp53 to undergo conformational changes. It was also difficult for residues in the mutants to form hydrogen bonds with amino acids in bovine trypsin; thus, the mutants could not stably bind to trypsin. CONCLUSION: Our findings suggest that the hydrophobic core is also an important factor in the maintenance of inhibitory activity and stability of rBTI.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38986341

RESUMO

The ovary in mammals has developed specialized mechanisms for protection against pathogen infections; however, the understanding of the innate immune system in the ovary of crustaceans is still limited. To elucidate the ovary's defense mechanisms in response to viral challenges, we subjected oriental river prawns (Macrobrachium nipponense) to poly I:C, a double-stranded RNA analog that emulates viral dsRNA, and analyzed the ovary's transcriptome profiles. Concurrently, RNA-seq analysis was performed on the hepatopancreas, a well-recognized immune-related tissue, following poly I:C challenge to investigate the distinct response mechanisms of the ovary and hepatopancreas and to gain a comprehensive understanding of the immune responses in both tissues. The results indicate that 1368 genes are differentially expressed in the ovary, with 903 genes upregulated and 465 genes downregulated. Subsequent analysis reveals that these differentially expressed genes (DEGs) include numerous genes associated with innate immunity, such as members of the C-type lectin, fibrinogen-related protein (Frep), Toll-like receptor, and NOD-like receptor (NLR) gene families, as well as acid phosphatase, scavenger receptor, crustin, Down syndrome cell adhesion molecule (Dscam), hemocyanin, and lipopolysaccharide and beta-1,3-glucan binding protein (LGBP). Furthermore, the DEGs include several genes related to ovary development, such as sox8, vitellogenin, progranulin, cyclin-dependent kinase, ecdysone receptor, frizzled, and members of the Fox gene family. In the hepatopancreas, a total of 729 DEGs were identified. Comparison of the DEGs in both tissues indicates that only 91 genes are common to both groups, highlighting significant tissue-specific responses to poly I:C stimulation. This study aims to enhance our understanding of the immune protective mechanisms employed by the ovary in response to pathogen exposure and establishes a foundation for investigating ovarian reproductive immunity in crustaceans.

5.
Clinics (Sao Paulo) ; 79: 100442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38996725

RESUMO

OBJECTIVE: To look into the effects of different anesthesia methods on the labor process and the expression of serum estrogen and progesterone in primiparas with painless labor. METHODS: 60 primiparas receiving painless labor were selected as the research objects, and they were divided into either a Spinal & Continuous epidural anesthesia group (n = 30) or a continuous epidural anesthesia group (n = 30), anesthesia is administered using the corresponding anesthesia method. The authors compared serum estrogen and progesterone, inflammatory index expression, pain degree and neonatal health status in different periods. RESULTS: At T2 and T3, serum P, LH, FSH and E2 levels in the Spinal & Continuous epidural anesthesia group were signally lower than those in the Spinal & Continuous epidural anesthesia group (p < 0.05). Spinal & Continuous epidural anesthesia group harbored faster onset and longer duration of sensory block and motor block than the Continuous epidural anesthesia group (p < 0.05). SAS and SDS scores of the Spinal & Continuous epidural anesthesia group were clearly lower than those of the Continuous epidural anesthesia group (p < 0.05). VAS score and serum TNF-α, IL-6 levels of pregnant women in the Spinal & Continuous epidural anesthesia group were memorably lower than those in the Continuous epidural anesthesia group at T2 and T3 (p < 0.05). The total incidence of postoperative complications in the Spinal & Continuous epidural anesthesia group was distinctively lower than that in the Continuous epidural anesthesia group (p < 0.05). CONCLUSION: Spinal anesthesia combined with continuous epidural anesthesia has a better anesthesia effect in the painless labor of primiparas, which can effectually ameliorate the labor process and the expression of serum estrogen and progesterone.


Assuntos
Anestesia Epidural , Estrogênios , Período Pós-Parto , Progesterona , Humanos , Feminino , Gravidez , Progesterona/sangue , Anestesia Epidural/métodos , Adulto , Estrogênios/sangue , Período Pós-Parto/sangue , Trabalho de Parto/sangue , Raquianestesia/métodos , Anestesia Obstétrica/métodos , Adulto Jovem , Fatores de Tempo , Medição da Dor , Paridade , Interleucina-6/sangue , Fator de Necrose Tumoral alfa/sangue
8.
Methods ; 226: 61-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631404

RESUMO

As the most abundant mRNA modification, m6A controls and influences many aspects of mRNA metabolism including the mRNA stability and degradation. However, the role of specific m6A sites in regulating gene expression still remains unclear. In additional, the multicollinearity problem caused by the correlation of methylation level of multiple m6A sites in each gene could influence the prediction performance. To address the above challenges, we propose an elastic-net regularized negative binomial regression model (called m6Aexpress-enet) to predict which m6A site could potentially regulate its gene expression. Comprehensive evaluations on simulated datasets demonstrate that m6Aexpress-enet could achieve the top prediction performance. Applying m6Aexpress-enet on real MeRIP-seq data from human lymphoblastoid cell lines, we have uncovered the complex regulatory pattern of predicted m6A sites and their unique enrichment pathway of the constructed co-methylation modules. m6Aexpress-enet proves itself as a powerful tool to enable biologists to discover the mechanism of m6A regulatory gene expression. Furthermore, the source code and the step-by-step implementation of m6Aexpress-enet is freely accessed at https://github.com/tengzhangs/m6Aexpress-enet.


Assuntos
Regulação da Expressão Gênica , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica/genética , Biologia Computacional/métodos , Metilação , Software , Adenosina/metabolismo , Adenosina/genética , Adenosina/análogos & derivados , Análise de Regressão
9.
J Physiol Biochem ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687443

RESUMO

Extracellular vesicles (EVs) are involved in both physiological and pathological processes in many organ systems and are essential in mediating intercellular communication and maintaining organismal homeostasis. It is helpful to propose new strategies for disease treatment by elucidating the mechanisms of EV release and sorting. An increasing number of studies have shown that there is specific homeostasis in EVs, which is helpful for the human body to carry out physiological activities. In contrast, an EV homeostasis im-balance promotes or accelerates disease onset and development. Alternatively, regulating the quality of EVs can maintain homeostasis and even achieve the purpose of treating conditions. An analysis of the role of EV homeostasis in the onset and development of cardiovascular disease is presented in this review. This article also summarizes the methods that regulate EV homeostasis and their application in cardiovascular diseases. In particular, this study focuses on the connection between EV steady states and the cardiovascular system and the potential value of EVs in treating cardiovascular diseases.

10.
J Proteome Res ; 23(5): 1603-1614, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38557073

RESUMO

Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.


Assuntos
Braquiúros , Proteômica , Capacitação Espermática , Espermatozoides , Animais , Masculino , Braquiúros/metabolismo , Braquiúros/fisiologia , Proteômica/métodos , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo
11.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38606736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides have emerged as promising quantum functional blocks benefitting from their unique combination of spin, valley, and layer degrees of freedom, particularly for the tremendous flexibility of moiré superlattices formed by van der Waals stacking. These degrees of freedom coupled with the enhanced Coulomb interaction in 2D structures allow excitons to serve as on-chip information carriers. However, excitons are spatially circumscribed due to their low mobility and limited lifetime. One way to overcome these limitations is through the coupling of excitons with surface plasmon polaritons (SPPs), which facilitates an interaction between remote quantum states. Here, we showcase the successful coupling of SPPs with interlayer excitons in molybdenum diselenide/tungsten diselenide heterobilayers. Our results indicate that the valley polarization can be efficiently transferred to SPPs, enabling preservation of polarization information even after propagating tens of micrometers.

12.
Fish Shellfish Immunol ; 148: 109481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479568

RESUMO

The family of TIR domain-containing receptors includes numerous proteins involved in innate immunity. In this study, a member of this family was characterized from the ovary of the oriental river prawn Macrobrachium nipponense and identified as interleukin-1 receptor (MnIL-1R). Meanwhile, to elucidate the conservation of IL-1R, its orthologous were identified in several crustacean species as well. In addition, the expression pattern of MnIL-1R in various adult tissues and post different pathogen-associated molecular patterns (PAMPs) challenge in ovary was analyzed with qRT-PCR technology. Finally, the roles of MnIL-1R in the ovary were analyzed by RNAi technology. The main results are as follows: (1) MnIL-1R comprises a 1785 bp ORF encoding 594 amino acids and is structurally composed of five domains: a signal peptide, two immunoglobulin (IG) domains, a transmembrane region, and a TIR-2 domain; (2) the TIR domain showed a high conservation among analyzed crustacean species; (3) MnIL-1R is widely detected in all tested tissues including ovary; (4) MnIL-1R showed a positive response to challenges with LPS, PGN, and polyI:C in the ovary; (5) its IG domain showed strong binding ability to LPS and PGN, confirming its role as a pattern recognition receptor; (6) the expression patterns of several members of the Toll signaling pathway (Myd88, TRAF-6, Dorsal, and Relish) was similar to that of MnIL-1R after challenges with LPS, PGN, and polyI:C in the ovary; (7) the silencing of MnIL-1R resulted in down-regulation of theses gene' (Myd88, TRAF-6, Dorsal, and Relish) expression level in the ovary. These results suggest that MnIL-1R can activate the Toll signaling pathway in the ovary by directly recognizing LPS and PGN through its IG domain, thereby contributing to the immune response in the ovary of M. nipponense.


Assuntos
Palaemonidae , Feminino , Animais , Sequência de Aminoácidos , Sequência de Bases , Ovário/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata/genética , Proteínas de Artrópodes
13.
J Zhejiang Univ Sci B ; 24(12): 1106-1122, 2023 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38057268

RESUMO

With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.


Assuntos
Doenças Metabólicas , Peptídeos , Humanos , Fases de Leitura Aberta , Glucose , Genoma
14.
Plant Foods Hum Nutr ; 78(4): 790-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656398

RESUMO

Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.


Assuntos
Antioxidantes , Proteínas de Caenorhabditis elegans , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Milhetes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Subtilisinas/metabolismo
15.
Phys Rev Lett ; 131(3): 036901, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540882

RESUMO

The giant exciton binding energy and the richness of degrees of freedom make monolayer transition metal dichalcogenide an unprecedented playground for exploring exciton physics in 2D systems. Thanks to the well-energetically separated excitonic states, the response of the discrete excitonic states to the electric field could be precisely examined. Here we utilize the photocurrent spectroscopy to probe excitonic states under a static in-plane electric field. We demonstrate that the in-plane electric field leads to a significant orbital hybridization of Rydberg excitonic states with different angular momentum (especially orbital hybridization of 2s and 2p) and, consequently, optically actives 2p-state exciton. Besides, the electric-field controlled mixing of the high lying exciton state and continuum band enhances the oscillator strength of the discrete excited exciton states. This electric field modulation of the excitonic states in monolayer TMDs provides a paradigm of the manipulation of 2D excitons for potential applications of the electro-optical modulation in 2D semiconductors.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37493161

RESUMO

Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.

17.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373522

RESUMO

Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.


Assuntos
Anti-Infecciosos , Bacteriófagos , Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia
18.
Gene ; 877: 147534, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286018

RESUMO

Neocaridina denticulata sinensis is a crustacean of major economic significance in the Baiyangdian drainage area. In this study, the first assessment of N. denticulata sinensis genetic diversity and population structure was performed based on sequence analysis of nine polymorphic microsatellite loci and the mitochondrial cytochrome oxidase subunit I (cox1) gene. Samples (n = 192) were collected from four different regions in the Baiyangdian drainage area i.e., Baiyangdian Lake, Jumahe River, Xidayang Reservoir, and Fuhe River. Microsatellite loci analysis identified high levels of genetic diversity represented by observed heterozygosity (Ho) of 0.6865 âˆ¼ 0.9583, expected heterozygosity (He) of 0.7151 âˆ¼ 0.8723, and polymorphism information content (PIC) of 0.6676 âˆ¼ 0.8585. Based on the analysis of cox1 sequences, haplotype diversity (Hd) ranged from 0.568 to 0.853 while nucleotide diversity (π) ranged from 0.0029 to 0.2236. Furthermore, there was no evidence of expansion events in the N. denticulata sinensis populations. Pairwise FST revealed pronounced genetic differentiation, and clustering analyses showed defined genetic structures within the N. denticulata sinensis population. Three groups were identified from four sampled stocks, with Xidayang Reservoir, and Fuhe River populations clustered in the same group. This work identified novel molecular markers and provided an important reference to guide management strategies to assist conservation of N. denticulata sinensis resources.


Assuntos
Decápodes , Polimorfismo Genético , Animais , Decápodes/genética , Genes Mitocondriais , Haplótipos , Repetições de Microssatélites/genética , China , Variação Genética
19.
Environ Technol ; : 1-11, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37272148

RESUMO

Enzymatic catalysis is a promising approach for the degradation of organic pollutants and peroxidases (PODs) are one of the most common enzyme classes used to degrade organic pollutants. Proso millet peroxidase (PmPOD) is a peroxidase extracted and purified from proso millet bran which is the by-product of proso millet processing. In this study, we investigated the effects of PmPOD on the degradation of typical organic pollutants (Rhodamine B (RhB), bisphenol A, sulfadiazine) for the first time. Moreover, we screened RhB as the substrate with the best degradation effect. The degradation rate of RhB catalyzed by PmPOD (10 nM) reached 99.46% in 30 min under the optimal conditions (pH 5, 30°C, and molar ratio of RhB, H2O2 and HOBT of 1:9.58:1.94 × 10-3). The reaction kinetics parameters of PmPOD-mediated RhB degradation Km, Vmax and kcat were 62.2, 935.7 and 9.357 × 104, respectively. High-performance liquid chromatography analyses confirmed that PmPOD transformed RhB into two new products. Furthermore, toxicological evaluation in Caenorhabditis elegans demonstrated that 10 µg/mL RhB significantly reduced the lifespan by 8.3%, reduced the motility and pharynx-pumping rate compared with the control group, while the 10 µg/mL RhB product had no significant effect on these indexes. These data indicated that the toxicity of RhB disappeared after catalytic degradation by PmPOD. Taken together, these data suggest that catalysis of PmPOD is an effective method for degradation and detoxification of RhB. This study provides a potential candidate method for the biological treatment of RhB, and improves the added value of proso millet bran.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37269918

RESUMO

Quercetin (QUE) is one of the most widely distributed and used flavonoid. It has many biological activities and pharmacological effect. As a polyhydroxy phenol, QUE is easily oxidized. However, it is unclear how its biology efficacy changes after oxidation. In this study, we prepared QUE oxidation product (QUE-ox) through enzymatic oxidation of QUE. We found the oxidation reduced the antioxidant activity of QUE but increased its anti-amyloid activity in vitro. In C. elegans, oxidation increased the anti-aging effects of QUE. Further experiments showed that both QUE and QUE-ox delayed aging by improving stress resistance, but they have different molecular mechanisms. QUE mainly increased the transcriptional activities of DAF-16 and SKN-1, resulting in the enhancement of expression of oxidative stress resistance genes, and further increased the oxidative resistance in C. elegans. QUE-ox increased the transcriptional activities of DAF-16 and HSF-1 transcription factors to enhance the heat stress resistance. In summary, our study indicated oxidized QUE has stronger anti-amyloid activity and anti-aging effect than native form. This study provides a theoretical basis for the safe and rational application of QUE, especially for its antioxidant, anti-amyloid and anti-aging effects.


Assuntos
Caenorhabditis elegans , Quercetina , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Caenorhabditis elegans/genética , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Envelhecimento , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA