Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Asian J Androl ; 25(1): 13-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35435336

RESUMO

Infertility has become a serious disease since it affects 10%-15% of couples worldwide, and male infertility contributes to about 50% of the cases. Notably, a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China. As such, it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), spermatogonial stem cells (SSCs), and mesenchymal stem cells (MSCs), possess the abilities of both self-renewal and differentiation into germ cells. Significantly, much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions, e.g., the coculturing with Sertoli cells, three-dimensional culture system, the addition of growth factors and cytokines, and/or the overexpression of germ cell-related genes. In this review, we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us, and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infertilidade Masculina , Humanos , Recém-Nascido , Masculino , Células Germinativas , Células-Tronco Embrionárias , Diferenciação Celular
3.
Asian J Androl ; 23(3): 240-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33533740

RESUMO

Spermatogonial stem cells (SSCs) have great applications in both reproductive and regenerative medicine. Primates including monkeys are very similar to humans with regard to physiology and pathology. Nevertheless, little is known about the isolation, the characteristics, and the culture of primate SSCs. This study was designed to identify, isolate, and culture monkey SSCs. Immunocytochemistry was used to identify markers for monkey SSCs. Glial cell line-derived neurotrophic factor family receptor alpha-1 (GFRA1)-enriched spermatogonia were isolated from monkeys, namely Macaca fascicularis (M. fascicularis), by two-step enzymatic digestion and magnetic-activated cell sorting, and they were cultured on precoated plates in the conditioned medium. Reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and RNA sequencing were used to compare phenotype and transcriptomes in GFRA1-enriched spermatogonia between 0 day and 14 days of culture, and xenotransplantation was performed to evaluate the function of GFRA1-enriched spermatogonia. SSCs shared some phenotypes with rodent and human SSCs. GFRA1-enriched spermatogonia with high purity and viability were isolated from M. fascicularis testes. The freshly isolated cells expressed numerous markers for rodent SSCs, and they were cultured for 14 days. The expression of numerous SSC markers was maintained during the cultivation of GFRA1-enriched spermatogonia. RNA sequencing reflected a 97.3% similarity in global gene profiles between 0 day and 14 days of culture. The xenotransplantation assay indicated that the GFRA1-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-KitW/W (W) mutant mice. Collectively, GFRA1-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo. This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Separação Celular/métodos , Macaca fascicularis/classificação , Análise de Variância , Animais , Separação Celular/estatística & dados numéricos , Complicações do Diabetes , Modelos Animais de Doenças , Humanos , Ratos Sprague-Dawley
5.
BMC Cancer ; 19(1): 224, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866863

RESUMO

BACKGROUND: Our previous works have demonstrated that 8-bromo-7-methoxychrysin suppressed stemness of human hepatocellular carcinoma (HCC) cell line SMMC-7721 induced by condition medium from hepatic stellate cell line LX-2 that was activated by liver cancer stem-like cells (LCSCs). However, whether and whereby BrMC inhibits the stemness induced by co-culture of LCSCs and LX-2 cells remains to be investigated. METHODS: The second-generation spheres by sphere culture were identified and used as SMMC-7721-and MHCC97H-derived LCSLCs. SMMC-7721-and MHCC97-derived LCSCs/LX-2 cells transwell co-culture system was treated with BrMC and its lead compound chrysin. The concentrations of IL-6, IL-8, HGF and PDGF in condition medium from co-culture were measured by enzyme-linked immunosorbent assay (ELISA). The stemness of SMMC-7721 cells was evaluated by sphere formation assay and western blot analysis for expression levels of cancer stem cell markers (CD133 and CD44).The expression levels of cancer-associated fibroblast markers (FAP-α and α-SMA) were employed to evaluate pathologic activation of LX-2 cells. Addition of IL-6 and/or HGF or deletion of IL-6 and/or HGF was conducted to investigate the mechanisms for BrMC and chrysin treatment in SMMC-7721-derived LCSLCs co-cultured with LX-2cells. RESULTS: The co-culture of LCSLCs with LX-2 cells increased sphere formation capability as well as expression of CD133 and CD44 in SMMC-7721 cells, meanwhile, upregulated expression of FAP-α in LX-2 cells. ELISA indicated that the concentrations of IL-6 and HGF were significantly elevated in Co-CM than that of condition media from co-cultured SMMC-7721 cells/LX-2 cells. Treatment of BrMC and chrysin with co-cultures of SMMC-7721- and MHCC97H-derived LCSLCs and LX-2 cells effectively inhibited the above responses. Moreover, addition of IL-6 and/or HGF induced stemness of SMMC-7721 cells and activation of LX-2 cells, conversely, deletion of IL-6 and/or HGF suppressed those. Furthermore, the inhibitory effects of BrMC and chrysin on stemness of SMMC-7721 cells and activation of LX-2 cells were attenuated by addition of IL-6 or HGF, and enhanced by deletion of IL-6 or HGF. CONCLUSIONS: Our results suggest IL-6 and HGF may be the key communication molecules for the interaction between LCSLCs and HSCs, and BrMC and chrysin could block these effects and be the novel therapeutic candidates for HCC management.


Assuntos
Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Nutr Diabetes ; 7(12): 2, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259155

RESUMO

Insulin-like growth factor 1 (IGF1) is a key factor for tissue growth and fuel metabolism. The potential function of central IGF1 remains unclear. We previously observed that IGF1 expression is increased in the hypothalamus of obese mice lacking STAT5 in the central nervous system (CNS). In this study, we explored the potential metabolic function of central IGF1 by intracerebroventricular (ICV) injection of IGF1, over-expression of central IGF1 by administering an adeno-associated virus (AAV), and ICV injection of an anti-IGF1 antibody. Mice that over-expressed central IGF1 displayed increased appetite, improved glucose tolerance and insulin sensitivity, decreased Pomc levels in the hypothalamus, and increased UCP1 expression in brown fat tissue. This is the first study demonstrating that central IGF1 regulates several important metabolic functions.


Assuntos
Intolerância à Glucose/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Resistência à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...