Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38038798

RESUMO

The synchronous research and analysis of total and active soil microbial communities can provide insight into how these communities are impacted by continuous cropping years and pathogen infection. The diversity of total and active bacteria in rhizospheric soil of 2-year-old and 3-year-old healthy and diseased Panax notoginseng can comprehensively reveal the bacterial response characteristics in continuous cropping practice. The results showed that 4916 operational taxonomic units (OTUs) were found in the rhizospheric soil bacterial community of P. notoginseng at the DNA level, but only 2773 OTUs were found at the RNA level. The rhizospheric environment had significant effects on the active and bacterial communities, as indicated by the number of OTUs, Shannon, Chao1, Faith's phylogenetic diversity (Faith's PD), and Simpson's diversity indexes. The DNA level can better show the difference in diversity level before and after infection with root rot. The bacterial Chao1 and Faith's PD diversity indexes of 2-year-old root rot-diseased P. notoginseng rhizospheric soil (D2) were higher than that of healthy plants, while the bacterial Shannon diversity index of 3-year-old root rot-diseased P. notoginseng rhizospheric soil (D3) was the lowest in the total bacteria. Principal coordinate analysis (PCoA) illustrated that the total bacterial species composition changed markedly after root rot disease. There were significant differences in the composition of active bacterial species between the 2-year and 3-year rhizospheres. In conclusion, the total and active edaphic rhizospheric bacterial communities could provide important opportunities to understand the responses of bacteria to continuous cropping of P. notoginseng. Differential responses of total and active edaphic rhizosphere bacterial communities to continuous cropping of Panax notoginseng.

2.
Front Microbiol ; 14: 1238799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282728

RESUMO

Introduction: Bacillus cereus is a ubiquitous opportunistic human pathogen that causes food intoxications worldwide. However, the genomic characteristics and pathogenic mechanisms of B. cereus are still unclear. Methods: Here, we isolated and purified nine strains of B. cereus (LY01-LY09) that caused vomiting, diarrhea and other symptoms from four foodborne outbreaks happened in Guizhou Province in southwest China from June to September 2021. After colony observation, Gram staining, microscopic examination and biochemical test, they were identified as B. cereus. The genomic characteristics, phylogenetic relationships and virulence factors of the isolated strains were analyzed at the genome level. Genome sequencing, comparative genomic analysis, secondary metabolite analysis and quantitative PCR were utilized to give a thorough exploration of the strains. Results: We obtained the genome maps of LY01-LY09 and found that LY01-LY09 had a complex interspecific relationship with B. anthracis and B. thuringiensis. We also observed a contraction of gene families in LY01-LY09, and the contracted families were mainly associated with prophage, which contributed to the species diversity of B. cereus. The Hsp20 gene family underwent a rapid evolution in LY01-LY09, which facilitated the adaptation of the strains to adverse environmental conditions. Moreover, the LY01-LY09 strains exhibited a higher copy number in the non-ribosomal polypeptide synthetase (NRPS) genes and carried the complete cereulide synthetase (ces) gene cluster sequences. Considering that the NRPS system is a classical regulatory mechanism for emetic toxin synthesis, we hypothesized that LY01-LY09 could synthesize emetic toxins through the regulation of ces gene clusters by the NRPS system. Discussion: These findings are important for further investigation into the evolutionary relationship between B. cereus and their related species, as well as the underlying mechanisms governing the synthesis and secretion of bacterial toxins.

3.
Food Res Int ; 162(Pt B): 112176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461373

RESUMO

Metabolic syndrome (MS) is a common metabolic disorder characterized by obesity, insulin resistance, cardiovascular disease and gut microbiota dysbiosis. Pu-erh tea and its ingredient theabrownin have known functions on the reduction of body weight gain and fat accumulation. However, few studies systematicly analyze the different contributions and mechanisms of their anti-metabolic syndrome functions through multi-omics combination analysis. Here, we used metagenomics, transcriptomics and metabolomics technology to investigate the anti-metabolic syndrome mechanism of Pu-erh tea and theabrownin in MS mice. Our results suggested that Pu-erh tea and theabrownin interventions could improve the physiological functions of liver, jejunum and adipose tissues in MS mice. Hepatic transcriptome revealed that both interventions could regulate the circadian rhythm pathway. Glycerophospholipid and linoleic acid metabolism were also modulated by both interventions through serum and brain metabolome analysis. Faecal metagenome demonstrated that both interventions could increase the relative abundance of Clostridiales bacterium 42_27, Blautia coccoides and Firmicutes bacterium ASF500, but decrease the relative abundance of Brevundimonas vesicularis. Otherwise, compared with Pu-erh tea, theabrownin markedly upregulated the levels of hepatic antioxidants (i.e., SOD, GSH), prominently downregulated hepatic inflammatory factors (i.e., IL-1, IL-6, TNF-α) and malondialdehyde oxidant, but modestly reduced obesity-associated short-chain fatty acids in faeces in MS mice. Taken together, our data provided insights into the homogeneous and heterogeneous natural biological functions of theabrownin and Pu-erh tea in the treatment of metabolic syndrome.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Camundongos , Fígado , Encéfalo , Obesidade , Chá
4.
Braz J Microbiol ; 53(2): 991-1000, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229279

RESUMO

Increasing evidence demonstrated the oral microbial community profile characteristics affected by conventional cigarettes smoking, but few studies focus on oral microbiome in response to electronic cigarettes (E-cigarettes). This study aimed to investigate the effect of E-cigarettes on the oral microbiome and to describe the difference of oral community profiles between E-cigarette smokers and tobacco smokers. 16S rRNA V4 gene sequencing was performed to investigate the oral microbial profiles of 5 E-cigarette smokers, 14 tobacco smokers, 8 quitting tobacco smokers, and 6 nonsmokers. The Chao1, ACE, and Shannon diversity indexes increased significantly in saliva samples collected from E-cigarette smokers and tobacco smokers compared to the non-smokers, and no significant difference was found in alpha diversity between E-cigarette smokers and tobacco smokers. The main phyla Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria and major genera Neisseria, Streptococcus, Prevotellaceae, Fusobacterium, and Porphyromonas dominated in the smoking groups, while Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria became the dominant phyla along with the genera Corynebacterium, Neisseria, Streptococcus, Actinomyces, and Porphyromonas in the nonsmokers. The differences in the phylum Actinobacteria and genus Corynebacterium contributed to various functional differences between smokers and nonsmokers. The difference on oral microbial and composition between E-cigarettes and common tobacco were associated with increased Prevotellaceae and decreased Neisseria. Additionally, smoking cessation could lead to re-establishment of the oral microbiome to that of nonsmokers. Our data demonstrate that E-cigarette smoking had different effects on the structure and composition of the oral microbial community compared to tobacco smoking. However, the short- and long-term impact of E-cigarette smoking on microbiome composition and function needs further exploration.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Bactérias/genética , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Saliva
5.
Front Plant Sci ; 13: 1076037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618654

RESUMO

Introduction: Camellia is among the most ornamentally valuable flowers and plants worldwide. Flower abscission typically causes significant financial losses by the horticultural landscape. Previous research has revealed that phytohormones, transcription factors, and other genes involved in floral development regulate the maintenance and mortality of flowers. Methods: In this study, for the first time, the transcriptomes and targeted hormone metabolomics of three developmental stages of the receptacles of two distinct camellia strains (CF: abscission strain, CHF: nonabscission strain) were analyzed to determine their roles in regulating blossom abscission in camellia. Results: ABA content was shown to be considerably upregulated throughout all phases of CF development, as were the genes implicated in the ABA production pathway and their downstream counterparts. Highly expressed genes in CF were involved in galactose metabolism, phenylpropanoid biosynthesis, amino and nucleotide sugar metabolism, pentose and glucuronate interconversions, and MAPK. Among others, highly expressed genes in CHF are associated with fructose and mannose metabolism, alpha-linolenic acid metabolism, biosynthesis of secondary metabolites, starch and sucrose metabolism, and cutin, suberin, and wax biosynthesis. A vast variety of stress response-related pathways and redox-related activities were also shown to be active in CHF. In contrast, CF dramatically activated pathways associated with lignin production, keratinogenesis, cell wall biogenesis, and ABA response. A comparative transcriptomic study of the CF and CHF pathways revealed that the downstream response pathways of hormones, including CTK, BR, IAA, ethylene, and GA, were very active in CF, indicating a significant amount of signal transduction and transcriptional regulation by CF. In addition, members of the transcription factor family, such as MYB, bHLH, MADS, and WD40, may regulate flower abscission. Discussion: A comparative transcriptome analysis of two distinct strains of camellia receptacles elucidates the molecular processes and regulatory characteristics of flower abscission and provides direction for the targeted improvement and breeding of camellia.

6.
J Basic Microbiol ; 57(4): 337-344, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28060404

RESUMO

Rhizobacteria and endophytic bacteria play important roles in protecting host plants from infection by phytopathogens, which cause soil-borne diseases and severely impair plant health. Panax notoginseng is negatively affected by continuous cropping and becomes vulnerable to attack by microbial pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate root-endophytic and rhizospheric bacteria in response to continuous cropping of P. notoginseng. Numbers of rhizospheric bacteria decreased with continuous P. notoginseng cropping, while the effects of continuous cropping on endophytic bacteria were not statistically significant. Bacterial diversity was higher in healthy P. notoginseng rhizospheric soils and roots than in those of diseased P. notoginseng. The most dominant phyla detected during continuous cropping were Proteobacteria, Cyanobacteria, Actinobacteria, and Acidobacteria. The genera Pseudomonas, Rhodoplanes, Candidatus Solibacter, and Streptomyces were dominant in P. notoginseng rhizospheric soils and roots. Erwinia, Stenotrophomonas, Pseudomonas, and Sphingobium were specifically detected in relatively high proportions among root-rot rhizospheric bacteria and endogenous root bacteria in plants under continuous cropping, suggesting that they may be the pathogens responsible for the negative effects of continuous cropping on P. notoginseng. Based on canonical correspondence analysis of the bacterial communities that were identified from healthy plants and fallow soils, total phosphorus (P), pH, and organic soil matter exerted the greatest impacts upon bacterial community composition during continuous cropping. In general, continuous cropping practices for P. notoginseng and severe root-rot disease notably affected the community structure and the diversity of rhizospheric and root endophytic bacteria. Our study elucidated the ecological significance of microbial communities in healthy plant maintenance, and our results may inform biological control strategies during the continuous cropping of P. notoginseng.


Assuntos
Agricultura/métodos , Biodiversidade , Consórcios Microbianos , Panax notoginseng/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Endófitos/genética , Endófitos/isolamento & purificação , Consórcios Microbianos/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Solo/química
7.
Microbiol Res ; 194: 10-19, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27938858

RESUMO

Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng.


Assuntos
Endófitos/classificação , Fungos/classificação , Panax notoginseng/microbiologia , Rizosfera , Agricultura/métodos , Biodiversidade , China , Produtos Agrícolas/microbiologia , DNA Fúngico/isolamento & purificação , Endófitos/genética , Fertilizantes/microbiologia , Fungos/genética , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...