Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformation ; 16(5): 363-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831517

RESUMO

Sterility plays an important role in plant adaptation and evolution and has contributed to the development of high yielding crop hybrids. We used the widely targeted metabolomics profiling to survey the metabolites and biological pathways associated with male sterility in Prunus mira by comparing flowers from fertile and sterile trees. Male sterile flowers displayed abnormal stamen, uncolored anthers, and distorted and shrunken pollen grains with an apparent lack of turgidity. We report 566 metabolites in six flower samples and 140 differentially accumulated metabolites (DAMs) between both flower types. Most of the DAMs belong to the phenyl propanoid biosynthesis pathway, particularly flavonoid, flavone and flavonol biosynthesis pathways, implying that alterations in these key pathways link to male sterility in P. mira. The known link between low levels of flavonoid metabolites, weak expression levels of several structural genes from the phenyl propanoid biosynthesis pathway and hyper accumulation of reactive oxygen species were highlighted for understanding the underlying mechanism leading to the abnormal or aborted pollen grains observed in the sterile flowers. Data on the molecular mechanism of male sterility in Prunus mira will facilitate further in-depth investigations on this important agronomic and ecological trait.

2.
BMC Plant Biol ; 19(1): 463, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675926

RESUMO

BACKGROUND: Flesh color is one of the most important traits for the commercial value of peach fruit. To unravel the underlying regulatory network in Prunus mira, we performed an integrated analysis of the transcriptome and metabolome of 3 fruit types with various flesh pigmentations (milk-white, yellow and blood) at 3 developmental stages (pit-hardening, cell enlargement and fruit ripening). RESULTS: Transcriptome analysis showed that an intense transcriptional adjustment is required for the transition from the pit-hardening to the cell enlargement stage. In contrast, few genes were differentially expressed (DEGs) from the cell enlargement to the fruit ripening stage and importantly, the 3 fruits displayed diverse transcriptional activities, indicating that difference in fruit flesh pigmentations mainly occurred during the ripening stage. We further investigated the DEGs between pairs of fruit types during the ripening stage and identified 563 DEGs representing the 'core transcriptome' associated with major differentiations between the 3 fruit types, including flesh pigmentation. Meanwhile, we analyzed the metabolome, particularly, at the ripening stage and uncovered 40 differential metabolites ('core metabolome') between the 3 fruit types including 5 anthocyanins, which may be the key molecules associated with flesh coloration. Finally, we constructed the regulatory network depicting the interactions between anthocyanins and important transcripts involved in fruit flesh coloration. CONCLUSIONS: The major metabolites and transcripts involved in fruit flesh coloration in P. mira were unraveled in this study providing valuable information which will undoubtedly assist in breeding towards improved fruit quality in peach.


Assuntos
Frutas/fisiologia , Metaboloma , Prunus/fisiologia , Transcriptoma , Antocianinas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/crescimento & desenvolvimento
3.
Biomed Res Int ; 2019: 1395480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341887

RESUMO

In peach orchards, birds severely damage flowers during blossom season, decreasing the fruit yield potential. However, the wild peach species Prunus mira shows intraspecific variations of bird damage, indicating that some of the wild trees have developed strategies to avert bird foraging. Motivated by this observation, we formulated the present study to identify the potential flower metabolites mediating the bird's selective feeding behavior in P. mira flowers. The birds' preferred (FG) and avoided (BFT) flowers were collected from wild P. mira trees at three different locations, and their metabolite contents were detected, quantified, and compared. The widely-targeted metabolomics approach was employed to detect a diverse set of 603 compounds, predominantly, organic acids, amino acid derivatives, nucleotide and its derivatives, and flavones. By quantitatively comparing the metabolite contents between FG and BFT, three candidate metabolites, including Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside, Luteolin O-hexosyl-O-hexosyl-O-hexoside, and Salvianolic acid A, were differentially accumulated and showed the same pattern across the three sampling locations. Distinctly, Salvianolic acid A was abundantly accumulated in FG but absent in BFT, implying that it may be the potential metabolite attracting birds in some P. mira flowers. Overall, this study sheds light on the diversity of the floral metabolome in P. mira and suggests that the bird's selective feeding behavior may be mediated by variations in floral metabolite contents.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Flores/química , Prunus persica/metabolismo , Animais , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Flores/metabolismo , Lactatos/química , Lactatos/metabolismo , Luteolina/química , Luteolina/metabolismo , Metaboloma , Prunus persica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...