Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 233(1): 344-359, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610140

RESUMO

High-temperature stress inhibits normal cellular processes and results in abnormal growth and development in plants. However, the mechanisms by which rice (Oryza sativa) copes with high temperature are not yet fully understood. In this study, we identified a rice high temperature enhanced lesion spots 1 (hes1) mutant, which displayed larger and more dense necrotic spots under high temperature conditions. HES1 encoded a UDP-N-acetylglucosamine pyrophosphorylase, which had UGPase enzymatic activity. RNA sequencing analysis showed that photosystem-related genes were differentially expressed in the hes1 mutant at different temperatures, indicating that HES1 plays essential roles in maintaining chloroplast function. HES1 expression was induced under high temperature conditions. Furthermore, loss-of-function of HES1 affected heat shock factor expression and its mutation exhibited greater vulnerability to high temperature. Several experiments revealed that higher accumulation of reactive oxygen species occurred in the hes1 mutant at high temperature. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and comet experiments indicated that the hes1 underwent more severe DNA damage at high temperature. The determination of chlorophyll content and chloroplast ultrastructure showed that more severe photosystem defects occurred in the hes1 mutant under high temperature conditions. This study reveals that HES1 plays a key role in adaptation to high-temperature stress in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
2.
Plant Signal Behav ; 16(6): 1905336, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33769192

RESUMO

Tryptophan metabolism pathways are important components of the plant immune system; for example, serotonin is derived from tryptophan, and plays a vital role in rice (Oryza sativa) innate immunity. Recently, we isolated a rice mutant, early lesion leaf 1 (ell1), which exhibits lesions. RNA-seq analysis revealed that KEGG pathways related to amino acid metabolism were significantly enriched in the transcripts differentially expressed in this mutant. Furthermore, measurements of free amino acid contents revealed the accumulated tryptophan of ell1 mutant. In addition, the transcript levels of genes related to tryptophan biosynthesis were significantly enhanced in the ell1 mutant. These results revealed that ELL1 plays a critical role in tryptophan metabolism. Based on these findings, it is revealed that loss of ELL1 function may disrupt tryptophan metabolism, thereby inducing cell death and forming lesions in rice.


Assuntos
Morte Celular/efeitos dos fármacos , Morte Celular/genética , Oryza/genética , Oryza/metabolismo , Imunidade Vegetal/genética , Triptofano/genética , Triptofano/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
3.
Plant J ; 105(4): 942-956, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33190327

RESUMO

Lesion-mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map-based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation-related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild-type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H2 O2 ) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS-mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/fisiologia , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Oryza/enzimologia , Oryza/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
5.
Plant Physiol ; 184(1): 251-265, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32680975

RESUMO

Rice (Oryza sativa) spikelets have a unique inflorescence structure, and the mechanisms regulating their development are not yet fully understood. Moreover, approaches to manipulate spikelet development have the potential to increase grain yield. In this study, we identified and characterized a recessive spikelet mutant, namely more floret1 (mof1). The mof1 mutant has a delayed transition from the spikelet to the floral meristem, inducing the formation of extra lemma-like and palea-like organs. In addition, the main body of the palea was reduced, and the sterile lemma was enlarged and partially acquired hull (lemma and/or palea) identity. We used map-based cloning to identify the MOF1 locus and confirmed our identification by complementation and by generating new mof1 alleles using CRISPR-Cas9 gene editing. MOF1 encodes a MYB domain protein with the typical ethylene response factor-associated amphiphilic repression motifs, is expressed in all organs and tissues, and has a strong repression effect. MOF1 localizes to the nucleus and interacts with TOPLESS-RELATED PROTEINs to possibly repress the expression of downstream target genes. Taken together, our results reveal that MOF1 plays an important role in the regulation of organ identity and spikelet determinacy in rice.


Assuntos
Flores/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inflorescência/genética , Inflorescência/metabolismo , Meristema/genética , Meristema/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
6.
Sci China Life Sci ; 63(2): 228-238, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31919631

RESUMO

The palea and lemma are floral organ structures unique to grasses; these structures form the hull and directly affect grain size and quality. However, the molecular mechanisms controlling the development of the hull are not well understood. In this study, we characterized the rice (Oryza sativa) abnormal flower and grain1 (afg1) mutant, a new allele of OsMADS6. Similar to previously characterized osmads6 alleles, in the afg1 floret, the palea lost its marginal region and acquired the lemma identity. However, in contrast to other osmads6 alleles, the afg1 mutant showed altered grain size and grain quality, with decreased total starch and amylose contents, and increased protein and soluble sugar contents. The analysis of transcriptional activity suggested that AFG1 is a transcriptional activator and may affect grain size by regulating the expression levels of several genes related to cell expansion and proliferation in the afg1 mutant. These results revealed that AFG1 plays an important role in determining palea identity and affecting grain yield and quality in rice.


Assuntos
Grão Comestível/genética , Flores/genética , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Amilose/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/metabolismo , Mutação/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Amido/genética , Açúcares/metabolismo , Transcrição Gênica
7.
Sci Bull (Beijing) ; 65(9): 753-764, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659109

RESUMO

Rice (Oryza sativa) spikelets are a unique inflorescence structure and their development directly determines grain size and yield. Although many genes related to spikelet development have been reported, the molecular mechanisms underlying this process have not been fully elucidated. In this study, we identified a new recessive rice mutant, lacking rudimentary glume 1 (lrg1). The lrg1 spikelets only formed one rudimentary glume, which, along with the sterile lemmas, was homeotically transformed into lemma-like organs and acquired lemma identity. The transition from the spikelet to the floral meristem was delayed in the lrg1 mutant, resulting in the formation of an ectopic lemma-like organ between the sterile lemma and the terminal floret. In addition, we found that the abnormal lrg1 grain phenotype resulted from the alteration of cell numbers and the hull size. LRG1 encodes a ZOS4-06-C2H2 zinc-finger protein with the typical EAR motifs, and is expressed in all organs and tissues. LRG1 localizes to the nucleus and can interact with the TOPLESS-RELATED PROTEINs (TPRs) to repress the expressions of their downstream target genes. Taken together, our results reveal that LRG1 plays an important role in the regulation of spikelet organ identity and grain size.

8.
Plant J ; 100(4): 813-824, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31357245

RESUMO

The palea and lemma (hull) are grass-specific organs, and determine grain size and quality. In the study, AH2 encodes a MYB domain protein, and functions in the development of hull and grain. Mutation of AH2 produces smaller grains and alters grain quality including decreased amylose content and gel consistency, and increased protein content. Meantime, part of the hull lost the outer silicified cells, and induces a transformation of the outer rough epidermis to inner smooth epidermis cells, and the body of the palea was reduced in the ah2 mutant. We confirmed the function of AH2 by complementation, CRISPR-Cas9, and cytological and molecular tests. Additionally, AH2, as a repressor, repress transcription of the downstream genes. Our results revealed that AH2 plays an important role in the determination of hull epidermis development, palea identity, and grain size.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Clonagem Molecular , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/fisiologia , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Exp Bot ; 69(20): 4853-4866, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032251

RESUMO

In grass, the spikelet is a unique inflorescence structure that directly determines grain yield. Despite a great deal of research, the molecular mechanisms behind spikelet development are not fully understood. In the study, FZP encodes an ERF domain protein, and functions in grain size and sterile lemma identity. Mutation of FZP causes smaller grains and degenerated sterile lemmas. The small fzp-12 grains were caused by a reduction in cell number and size in the hulls. Interestingly, the sterile lemma underwent a homeotic transformation into a rudimentary glume in the fzp-12 and fzp-13 mutants, whereas the sterile lemma underwent a homeotic transformation into a lemma in FZP over-expressing plants, suggesting that FZP specifically determines the sterile lemma identity. We confirmed the function of FZP by complementation, CRISPR-Cas9 gene editing, and cytological and molecular tests. Additionally, FZP interacts specifically with the GCC-box and DRE motifs, and may be involved in regulation of the downstream genes. Our results revealed that FZP plays a vital role in the regulation of grain size, and first provides clear evidence in support of the hypothesis that the lemma, rudimentary glume, and sterile lemma are homologous organs.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Grão Comestível/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
11.
Plant Cell Physiol ; 59(3): 487-499, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272542

RESUMO

Sugars are the most abundant organic compounds produced by plants, and can be used to build carbon skeletons and generate energy. The sugar accumulation 1 (OsSAC1) gene encodes a protein with an unknown function that exhibits four N-terminal transmembrane regions and two conserved domains of unknown function, DUF4220 and DUF594. OsSAC1 was found to be poorly and specifically expressed at the bottoms of young leaves and in the developing leaf sheaths. Subcellular location results showed that OsSAC1 was co-localized with ER:mCherry and targeted the endoplasmic reticulum (ER). OsSAC1 has been found to affect sugar partitioning in rice (Oryza sativa). I2/KI starch staining, ultrastructure observations and starch content measurements indicated that more and larger starch granules accumulated in ossac1 source leaves than in wild-type (WT) source leaves. Additionally, higher sucrose and glucose concentrations accumulated in the ossac1 source leaves than in WT source leaves, whereas lower sucrose and glucose concentrations were observed in the ossac1 young leaves and developing leaf sheaths than in those of the WT. Much greater expression of OsAGPL1 and OsAGPS1 (responsible for starch synthesis) and significantly less expression of OscFBP1, OscFBP2, OsSPS1 and OsSPS11 (responsible for sucrose synthesis) and OsSWEET11, OsSWEET14 and OsSUT1 (responsible for sucrose loading) occurred in ossac1 source leaves than in WT source leaves. A greater amount of the rice plasmodesmatal negative regulator OsGSD1 was detected in ossac1 young leaves and developing leaf sheaths than in those of the WT. These results suggest that ER-targeted OsSAC1 may indirectly regulate sugar partitioning in carbon-demanding young leaves and developing leaf sheaths.


Assuntos
Retículo Endoplasmático/metabolismo , Genes de Plantas , Mutação/genética , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Retículo Endoplasmático/ultraestrutura , Regulação da Expressão Gênica de Plantas , Oryza/ultraestrutura , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...