Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Commun Biol ; 7(1): 854, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997510

RESUMO

The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adolescente , Criança , Adulto Jovem , Adulto , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
2.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948845

RESUMO

Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, we observed a continuum of developmental profiles that spans from an early childhood increase in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in association-association connectional strength. The S-A connectional axis also captured spatial variations in associations between structural connectivity and both higher-order cognition and general psychopathology. Together, our findings reveal a hierarchical axis in the development of structural connectivity across the human connectome.

3.
Adv Sci (Weinh) ; : e2400061, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005232

RESUMO

Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.

4.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617291

RESUMO

Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.

5.
Dev Cogn Neurosci ; 66: 101370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583301

RESUMO

Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.

6.
Eur Psychiatry ; 67(1): e28, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38425212

RESUMO

BACKGROUND: The early prediction of adolescent depression recurrence poses a significant challenge in the field. This study aims to investigate and compare the abilities of the general psychopathology factor (p) and the specific internalizing factor, in predicting depression recurrence over a 2-year course, as well as identifying remitted depressed adolescents from healthy adolescents. Longitudinal changes of these two factors in different trajectory groups were also tracked to examine their sensitivity to sustained remission and relapse. METHODS: We included 255 baseline-remitted depressed adolescents and a healthy control group (n = 255) matched in age, sex, and race, sourced from the Adolescent Brain Cognitive Development Study. The linear mixed model was employed for the statistical analysis. RESULTS: The p factor not only effectively discriminated between remitted depressed adolescents and healthy controls but also robustly predicted the depression recurrence over a subsequent 2-year course. The specific internalizing factor could only differentiate remitted depressed adolescents from healthy controls. Additionally, a noteworthy longitudinal decline of the p factor in the sustained-remission group was observed. CONCLUSIONS: Psychopathology factors serve as the inherent and enduring measurement of long-term mental health aberrations. Longitudinal results indicate that the p factor is more sensitive to respond to sustained remission than the internalizing factor. The ability of the overall p factor to anticipate depression relapse, unlike the specific internalizing factor, suggests the clinical interventions should monitor and mitigate the coincident symptoms across all dimensions to preempt relapse of adolescent depression, rather than an exclusive focus on internalizing symptoms.


Assuntos
Depressão , Psicopatologia , Humanos , Adolescente , Depressão/diagnóstico , Depressão/psicologia , Recidiva
7.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38527807

RESUMO

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Masculino , Feminino , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Atenção/fisiologia , Adulto Jovem , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Memória de Longo Prazo/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/fisiologia , Memória de Curto Prazo/fisiologia
8.
Prog Neurobiol ; 233: 102570, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232783

RESUMO

Just as navigating a physical environment, navigating through the landscapes of spontaneous brain states may also require an internal cognitive map. Contemporary computation theories propose modeling a cognitive map from a reinforcement learning perspective and argue that the map would be predictive in nature, representing each state as its upcoming states. Here, we used resting-state fMRI to test the hypothesis that the spaces of spontaneously reoccurring brain states are cognitive map-like, and may exhibit future-oriented predictivity. We identified two discrete brain states of the navigation-related brain networks during rest. By combining pattern similarity and dimensional reduction analysis, we embedded the occurrences of each brain state in a two-dimensional space. Successor representation modeling analysis recognized that these brain state occurrences exhibit place cell-like representations, akin to those observed in a physical space. Moreover, we observed predictive transitions of reoccurring brain states, which strongly covaried with individual cognitive and emotional assessments. Our findings offer a novel perspective on the cognitive significance of spontaneous brain activity and support the theory of cognitive map as a unifying framework for mental navigation.


Assuntos
Encéfalo , Emoções , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cognição
9.
bioRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38045396

RESUMO

The human cerebral cortex is organized into functionally segregated but synchronized regions bridged by the structural connectivity of white matter pathways. While structure-function coupling has been implicated in cognitive development and neuropsychiatric disorders, studies yield inconsistent findings. The extent to which the structure-function coupling reflects reliable individual differences or primarily group-common characteristics remains unclear, at both the global and regional brain levels. By leveraging two independent, high-quality datasets, we found that the graph neural network accurately predicted unseen individuals' functional connectivity from structural connectivity, reflecting a strong structure-function coupling. This coupling was primarily driven by network topology and was substantially stronger than that of the linear models. Moreover, we observed that structure-function coupling was dominated by group-common effects, with subtle yet significant individual-specific effects. The regional group and individual effects of coupling were hierarchically organized across the cortex along a sensorimotor-association axis, with lower group and higher individual effects in association cortices. These findings emphasize the importance of considering both group and individual effects in understanding cortical structure-function coupling, suggesting insights into interpreting individual differences of the coupling and informing connectivity-guided therapeutics.

10.
Mol Psychiatry ; 29(2): 484-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102486

RESUMO

Parent-child transmission of suicidal behaviors has been extensively studied, but the investigation of a three-generation family suicide risk paradigm remains limited. In this study, we aimed to explore the behavioral and brain signatures of multi-generational family history of suicidal behaviors (FHoS) in preadolescents, utilizing a longitudinal design and the dataset from Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®), which comprised 4 years of data and includes a total of 9,653 preadolescents. Our findings revealed that multi-generational FHoS was significantly associated with an increased risk of problematic behaviors and suicidal behaviors (suicide ideation and suicide attempt) in offspring. Interestingly, the problematic behaviors were further identified as a mediator in the multi-generational transmission of suicidal behaviors. Additionally, we observed alterations in brain structure within superior temporal gyrus (STG), precentral/postcentral cortex, posterior parietal cortex (PPC), cingulate cortex (CC), and planum temporale (PT), as well as disrupted functional connectivity of default mode network (DMN), ventral attention network (VAN), dorsal attention network (DAN), fronto-parietal network (FPN), and cingulo-opercular network (CON) among preadolescents with FHoS. These results provide compelling longitudinal evidence at the population level, highlighting the associations between multi-generational FHoS and maladaptive behavioral and neurodevelopmental outcomes in offspring. These findings underscore the need for early preventive measures aimed at mitigating the familial transmission of suicide risk and reducing the global burden of deaths among children and adolescents.


Assuntos
Encéfalo , Ideação Suicida , Tentativa de Suicídio , Humanos , Feminino , Masculino , Criança , Adolescente , Tentativa de Suicídio/psicologia , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Suicídio/psicologia , Fatores de Risco
11.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110396

RESUMO

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Cognição , Testes Neuropsicológicos , Mapeamento Encefálico
12.
Lancet Reg Health West Pac ; 37: 100794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693882

RESUMO

Non-suicidal self-injury behavior (NSSI) is a serious public health concern that requires immediate attention. Despite the high prevalence of NSSI among the Chinese population, there is a significant gap in research on the comprehensive picture of this field. Therefore, a scoping review was conducted to investigate the prevalence, methods, risk factors, and preventive intervention programs related to NSSI in China. The review found that the estimated lifetime prevalence of NSSI among Chinese youth population is alarmingly high at 24.7% (N = 1,088,433). Common methods of NSSI include scratching, hitting, and biting. Additionally, the review synthesized 249 risk factors based on the biopsychosocial-ecological framework, highlighting the urgent need for intervention. However, only 12 empirical studies focus on NSSI prevention or intervention programs were included. These findings underscore the necessity for more clinical practices and larger studies to identify effective interventions and ultimately alleviate the burden of NSSI on the Chinese population. Funding: This review was supported by Humanity and Social Science Youth foundation of Ministry of Education (22YJCZH018), Science and Technology Innovation 2030 (STI2030-Major Projects:2021ZD0200702), National Natural Science Foundation of China (81825009), and Shuimu Tsinghua Scholar. No funding agencies were involved in the data collection, data analysis, and writing of this paper.

13.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745373

RESUMO

The functional connectome of the human brain represents the fundamental network architecture of functional interdependence in brain activity, but its normative growth trajectory across the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset from 119 global sites, including 33,809 task-free fMRI and structural MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. Lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We report critical inflection points in the non-linear growth trajectories of the whole-brain functional connectome, particularly peaking in the fourth decade of life. Having established the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further show distinct maturation timelines for functional segregation within different subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder. Our findings shed light on the life-course evolution of the functional connectome and serve as a normative reference for quantifying individual variation in patients with neurological and psychiatric disorders.

14.
Digit Health ; 9: 20552076231187476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485331

RESUMO

Background: To address the lack of mental health practitioners in developing countries, the current study explored the feasibility of a newly developed self-guided digital intervention program TEA (training for emotional adaptation) in alleviating depressive and anxiety symptoms, as one of a few studies which adapted from theoretical models with effective intervention techniques. Methods: The first part of this study involved 11 professional mental health practitioners giving feedback on the feasibility of the TEA; while the second part involved a mixed-method single-arm study with 32 participants recruited online, who went through the seven intervention sessions within 14 days. The questionnaires were collected before, after, 14 days after, and 30 days after intervention. Additionally, 10 participants were invited to semi-structured interviews regarding their suggestions. Results: Practitioners thought that the TEA showed high professionalism (8.91/10) and is suitable for treating emotional symptoms (8.09/10). The generalized estimating equation model showed that the TEA significantly reduced participants' depressive and anxiety symptoms, while the effects of the intervention remained 30 days post intervention (Cohen's d > 1). Thematic analysis revealed three main themes about future improvement, including content improvement, interaction improvement, and bug-fixing. Conclusions: To address the current needs for digital mental health intervention programs to account for the insufficient availability of mental health services in China, the current study provides preliminary evidence of the effectiveness of TEA, with the potential to address the urgent need for remote mental health services. Trial registration: The study was registered at the Chinese Clinical Trial Register (ChiCTR), with number [ChiCTR2200065944].

15.
CNS Neurosci Ther ; 29(12): 3774-3785, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37288482

RESUMO

AIM: Deficit schizophrenia (DS), defined by primary and enduring negative symptoms, has been proposed as a promising homogeneous subtype of schizophrenia. It has been demonstrated that unimodal neuroimaging characteristics of DS were different from non-deficit schizophrenia (NDS), however, whether multimodal-based neuroimaging features could identify deficit syndrome remains to be determined. METHODS: Functional and structural multimodal magnetic resonance imaging of DS, NDS and healthy controls were scanned. Voxel-based features of gray matter volume, fractional amplitude of low-frequency fluctuations, and regional homogeneity were extracted. The support vector machine classification models were constructed using these features separately and jointly. The most discriminative features were defined as the first 10% of features with the greatest weights. Moreover, relevance vector regression was applied to explore the predictive values of these top-weighted features in predicting negative symptoms. RESULTS: The multimodal classifier achieved a higher accuracy (75.48%) compared with the single modal model in distinguishing DS from NDS. The most predictive brain regions were mainly located in the default mode and visual networks, exhibiting differences between functional and structural features. Further, the identified discriminative features significantly predicted scores of diminished expressivity factor in DS but not NDS. CONCLUSIONS: The present study demonstrated that local properties of brain regions extracted from multimodal imaging data could distinguish DS from NDS with a machine learning-based approach and confirmed the relationship between distinctive features and the negative symptoms subdomain. These findings may improve the identification of potential neuroimaging signatures and improve the clinical assessment of the deficit syndrome.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/patologia
16.
Nat Commun ; 14(1): 3414, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296147

RESUMO

While functional MRI (fMRI) studies have mainly focused on gray matter, recent studies have consistently found that blood-oxygenation-level-dependent (BOLD) signals can be reliably detected in white matter, and functional connectivity (FC) has been organized into distributed networks in white matter. Nevertheless, it remains unclear whether this white matter FC reflects underlying electrophysiological synchronization. To address this question, we employ intracranial stereotactic-electroencephalography (SEEG) and resting-state fMRI data from a group of 16 patients with drug-resistant epilepsy. We find that BOLD FC is correlated with SEEG FC in white matter, and this result is consistent across a wide range of frequency bands for each participant. By including diffusion spectrum imaging data, we also find that white matter FC from both SEEG and fMRI are correlated with white matter structural connectivity, suggesting that anatomical fiber tracts underlie the functional synchronization in white matter. These results provide evidence for the electrophysiological and structural basis of white matter BOLD FC, which could be a potential biomarker for psychiatric and neurological disorders.


Assuntos
Substância Branca , Humanos , Substância Branca/fisiologia , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética/métodos , Eletroencefalografia , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico
17.
BMC Med ; 21(1): 141, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046279

RESUMO

BACKGROUND: Although both peer victimization and bullying perpetration negatively impact preadolescents' development, the underlying neurobiological mechanism of this adverse relationship remains unclear. Besides, the specific psycho-cognitive patterns of different bullying subtypes also need further exploration, warranting large-scale studies on both general bullying and specific bullying subtypes. METHODS: We adopted a retrospective methodology by utilizing the data from the Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®) cohort collected between July 2018 and January 2021. Participants were preadolescents aged from 10 to 13 years. The main purpose of our study is to examine the associations of general and specific peer victimization/bullying perpetration with preadolescents' (1) suicidality and non-suicidal self-injury; (2) executive function and memory, including attention inhibition, processing speed, emotion working memory, and episodic memory; (3) brain structure abnormalities; and (4) brain network disturbances. Age, sex, race/ethnicity, body mass index (BMI), socioeconomic status (SES), and data acquisition site were included as covariates. RESULTS: A total of 5819 participants aged from 10 to 13 years were included in this study. Higher risks of suicide ideation, suicide attempt, and non-suicidal self-injury were found to be associated with both bullying perpetration/peer victimization and their subtypes (i.e., overt, relational, and reputational). Meanwhile, poor episodic memory was shown to be associated with general victimization. As for perpetration, across all four tasks, significant positive associations of relational perpetration with executive function and episodic memory consistently manifested, yet opposite patterns were shown in overt perpetration. Notably, distinct psycho-cognitive patterns were shown among different subtypes. Additionally, victimization was associated with structural brain abnormalities in the bilateral paracentral and posterior cingulate cortex. Furthermore, victimization was associated with brain network disturbances between default mode network and dorsal attention network, between default mode network and fronto-parietal network, and ventral attention network related connectivities, including default mode network, dorsal attention network, cingulo-opercular network, cingulo-parietal network, and sensorimotor hand network. Perpetration was also associated with brain network disturbances between the attention network and the sensorimotor hand network. CONCLUSIONS: Our findings offered new evidence for the literature landscape by emphasizing the associations of bullying experiences with preadolescents' clinical characteristics and cognitive functions, while distinctive psycho-cognitive patterns were shown among different subtypes. Additionally, there is evidence that these associations are related to neurocognitive brain networks involved in attention control and episodic retrieval. Given our findings, future interventions targeting ameliorating the deleterious effect of bullying experiences on preadolescents should consider their subtypes and utilize an ecosystemic approach involving all responsible parties.


Assuntos
Bullying , Vítimas de Crime , Suicídio , Adolescente , Humanos , Criança , Estudos Retrospectivos , Bullying/psicologia , Vítimas de Crime/psicologia , Encéfalo
18.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945479

RESUMO

The human cerebral cortex is connected by intricate inter-areal wiring at the macroscale. The cortical hierarchy from primary sensorimotor to higher-order association areas is a unifying organizational principle across various neurobiological properties; however, previous studies have not clarified whether the connections between cortical regions exhibit a similar hierarchical pattern. Here, we identify a connectional hierarchy indexed by inter-individual variability of functional connectivity edges, which continuously progresses along a hierarchical gradient from within-network connections to between-network edges connecting sensorimotor and association networks. We found that this connectional hierarchy of variability aligns with both hemodynamic and electromagnetic connectivity strength and is constrained by structural connectivity strength. Moreover, the patterning of connectional hierarchy is related to inter-regional similarity in transcriptional and neurotransmitter receptor profiles. Using the Neurosynth cognitive atlas and cortical vulnerability maps in 13 brain disorders, we found that the connectional hierarchy of variability is associated with similarity networks of cognitive relevance and that of disorder vulnerability. Finally, we found that the prominence of this hierarchical gradient of connectivity variability declines during youth. Together, our results reveal a novel hierarchal organizational principle at the connectional level that links multimodal and multiscale human connectomes to individual variability in functional connectivity.

19.
Med Image Anal ; 85: 102756, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706636

RESUMO

A novel self-supervised deep learning (DL) method is developed to compute personalized brain functional networks (FNs) for characterizing brain functional neuroanatomy based on functional MRI (fMRI). Specifically, a DL model of convolutional neural networks with an encoder-decoder architecture is developed to compute personalized FNs directly from fMRI data. The DL model is trained to optimize functional homogeneity of personalized FNs without utilizing any external supervision in an end-to-end fashion. We demonstrate that a DL model trained on fMRI scans from the Human Connectome Project can identify personalized FNs and generalizes well across four different datasets. We further demonstrate that the identified personalized FNs are informative for predicting individual differences in behavior, brain development, and schizophrenia status. Taken together, the self-supervised DL allows for rapid, generalizable computation of personalized FNs.


Assuntos
Conectoma , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética , Encéfalo , Redes Neurais de Computação
20.
Cereb Cortex ; 33(11): 6803-6817, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36657772

RESUMO

Individualized cortical network topography (ICNT) varies between people and exhibits great variability in the association networks in the human brain. However, these findings were mainly discovered in Western populations. It remains unclear whether and how ICNT is shaped by the non-Western populations. Here, we leveraged a multisession hierarchical Bayesian model to define individualized functional networks in White American and Han Chinese populations with data from both US and Chinese Human Connectome Projects. We found that both the size and spatial topography of individualized functional networks differed between White American and Han Chinese groups, especially in the heteromodal association cortex (including the ventral attention, control, language, dorsal attention, and default mode networks). Employing a support vector machine, we then demonstrated that ethnicity-related ICNT diversity can be used to identify an individual's ethnicity with high accuracy (74%, pperm < 0.0001), with heteromodal networks contributing most to the classification. This finding was further validated through mass-univariate analyses with generalized additive models. Moreover, we reveal that the spatial heterogeneity of ethnic diversity in ICNT correlated with fundamental properties of cortical organization, including evolutionary cortical expansion, brain myelination, and cerebral blood flow. Altogether, this case study highlights a need for more globally diverse and publicly available neuroimaging datasets.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem , Conectoma/métodos , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...