Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(8): 5216-5221, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38344004

RESUMO

Studying the non-Arrhenius behavior of rubber is crucial to ensure appropriate lifetime prediction and reduce ineffective acceleration experiments. In this paper, accelerated thermal aging from 70 °C to 130 °C is conducted on an ethylene propylene diene monomer (EPDM) rubber and the tensile characteristics of the rubber are tested. Further, the popular Mooney-Rivlin equation is employed to analyze the influence of aging temperature and time on the effective crosslink densities. The enormous increase in the physical crosslinking density when the aging temperature reaches 115 °C demonstrates that the activation energy varied during the degradation process. By combining the Arrhenius extrapolation with the time-temperature superposition (TTS) extrapolation, a novel method to prove the non-Arrhenius behavior of EPDM rubber is provided. Based on the method proposed in this study, the activation energies for the high- and low-temperature processing of rubber can be determined.

2.
Sensors (Basel) ; 17(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28777341

RESUMO

We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system's capabilities are demonstrated by in-situ OM and SEM testing of the system's performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...