Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Fish Physiol Biochem ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869816

RESUMO

This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.

2.
Anim Nutr ; 17: 335-346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800736

RESUMO

The present study aimed to compare the nutritional effects of cholesterol, bile acids, and combination of cholesterol with bile acids in plant-based diets on juvenile genetically improved farmed tilapia (GIFT; Oreochromis niloticus). The isonitrogenous (321 g/kg crude protein) and isolipidic (76 g/kg crude fat) diets (Con diet) were based on plant protein sources, which included corn gluten meal, soybean meal, cottonseed meal and rapeseed meal. The Con diet was supplemented with 12 g/kg cholesterol (CHO diet), 0.2 g/kg bile acids (BAs diet), a combination of 12 g/kg cholesterol and 0.2 g/kg bile acids (CHO-BAs diet), respectively. Each diet was fed to three tanks in an indoor recirculating aquaculture system for 9 weeks. Results showed that compared to the Con group, fish had a higher weight gain rate, hepatosomatic index, and a lower feed conversion ratio in the CHO-BAs group. The highest levels of whole-fish fat and ash were found in the Con group. Serum parameters, including activities of alanine aminotransferase (ALT) and aspartate transaminase (AST), along with levels of glucose (GLU) and triglyceride (TG) except for total cholesterol (TCHO), were lower in the CHO, BAs, and CHO-BAs groups than those in the Con group (P < 0.001). Histological examination revealed that fish in the Con group exhibited severe hepatocyte vacuolization and diminished hepatocyte proliferation. Gene expression analysis indicated that the transcriptional levels of bile acid metabolism-related genes (including fxr, fgf19, bsep) were up-regulated in the CHO-BAs group (P < 0.05), whereas cholesterol metabolism-related genes (acly and hmgcr) were down-regulated in both CHO and CHO-BAs groups (P < 0.001). Moreover, UPLC-MS/MS analysis revealed that the higher taurine-conjugated bile acids (T-BAs), followed by free bile acids (Free-BAs) and glycine (G-BAs) were determined in tilapia bile. Among these, taurochenodeoxycholic bile acid was the predominant bile acid. Dietary bile acids supplementation also increased the proportion of T-BAs (tauro ß-muricholic acid and taurodehydrocholic acid) while decreasing Free-BAs in the fish bile. In conclusion, the incorporation of cholesterol with bile acids into plant-based diets can effectively reduce cholesterol uptake, suppress bile acids synthesis, enhance bile acids efflux, and promote hepatocyte proliferation, which is helpful for maintaining the normal liver morphology in tilapia, and thus improving its growth performance.

3.
Viruses ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37766214

RESUMO

The dual-specificity phosphatase (DUSP) family plays an important role in response to adverse external factors. In this study, the DUSP5 from Epinephelus coioides, an important marine fish in Southeast Asia and China, was isolated and characterized. As expected, E. coioides DUSP5 contained four conserved domains: a rhodanese homology domain (RHOD); a dual-specificity phosphatase catalytic domain (DSPc); and two regions of low compositional complexity, indicating that E. coioides DUSP5 belongs to the DUSP family. E. coioides DUSP5 mRNA could be detected in all of the examined tissues, and was mainly distributed in the nucleus. Infection with Singapore grouper iridovirus (SGIV), one of the most important pathogens of marine fish, could inhibit the expression of E. coioides DUSP5. The overexpression of DUSP5 could significantly downregulate the expression of the key SGIV genes (MCP, ICP18, VP19, and LITAF), viral titers, the activity of NF-κB and AP-I, and the expression of pro-inflammatory factors (IL-6, IL-8, and TNF-α) of E. coioides, but could upregulate the expressions of caspase3 and p53, as well as SGIV-induced apoptosis. The results demonstrate that E. coioides DUSP5 could inhibit SGIV infection by regulating E. coioides immune-related factors, indicating that DUSP5 might be involved in viral infection.

4.
Innovation (Camb) ; 4(5): 100479, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539440

RESUMO

Skeletal muscle atrophy is a debilitating condition that significantly affects quality of life and often lacks effective treatment options. Muscle atrophy can have various causes, including myogenic, neurogenic, and other factors. Recent investigation has underscored a compelling link between the gut microbiota and skeletal muscle. Discerning the potential differences in the gut microbiota associated with muscle atrophy-related diseases, understanding their influence on disease development, and recognizing their potential as intervention targets are of paramount importance. This review aims to provide a comprehensive overview of the role of the gut microbiota in muscle atrophy-related diseases. We summarize clinical and pre-clinical studies that investigate the potential for gut microbiota modulation to enhance muscle performance and promote disease recovery. Furthermore, we delve into the intricate interplay between the gut microbiota and muscle atrophy-related diseases, drawing from an array of studies. Emerging evidence suggests significant differences in gut microbiota composition in individuals with muscle atrophy-related diseases compared with healthy individuals. It is conceivable that these alterations in the microbiota contribute to the pathogenesis of these disorders through bacterium-related metabolites or inflammatory signals. Additionally, interventions targeting the gut microbiota have demonstrated promising results for mitigating disease progression in animal models, underscoring the therapeutic potential of modulating the gut microbiota in these conditions. By analyzing the available literature, this review sheds light on the involvement of the gut microbiota in muscle atrophy-related diseases. The findings contribute to our understanding of the underlying mechanisms and open avenues for development of novel therapeutic strategies targeting the gut-muscle axis.

5.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569372

RESUMO

Diabetes has gradually become a serious disease that threatens human health. It can induce various complications, and the pathogenesis of diabetes is quite complex and not yet fully elucidated. The zebrafish has been widely acknowledged as a useful model for investigating the mechanisms underlying the pathogenesis and therapeutic interventions of diabetes. However, the molecular basis of zebrafish diabetes induced by overfeeding remains unknown. In this study, a zebrafish diabetes model was established by overfeeding, and the molecular basis of zebrafish diabetes induced by overfeeding was explored. Compared with the control group, the body length, body weight, and condition factor index of zebrafish increased significantly after four weeks of overfeeding. There was a significant elevation in the fasting blood glucose level, accompanied by a large number of lipid droplets accumulated within the liver. The levels of triglycerides and cholesterol in both the serum and liver exhibited a statistically significant increase. Transcriptome sequencing was employed to investigate changes in the livers of overfed zebrafish. The number of up-regulated and down-regulated differentially expressed genes (DEGs) was 1582 and 2404, respectively, in the livers of overfed zebrafish. The DEGs were subjected to KEGG and GO enrichment analyses, and the hub signaling pathways and hub DEGs were identified. The results demonstrate that sixteen genes within the signal pathway associated with fatty acid metabolism were found to be significantly up-regulated. Specifically, these genes were found to mainly participate in fatty acid transport, fatty acid oxidation, and ketogenesis. Furthermore, thirteen genes that play a crucial role in glucose metabolism, particularly in the pathways of glycolysis and glycogenesis, were significantly down-regulated in the livers of overfed zebrafish. These results indicate insulin resistance and inhibition of glucose entry into liver cells in the livers of overfed zebrafish. These findings elucidate the underlying molecular basis of zebrafish diabetes induced by overfeeding and provide a model for further investigation of the pathogenesis and therapeutics of diabetes.


Assuntos
Diabetes Mellitus , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Diabetes Mellitus/metabolismo , Fígado/metabolismo , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768175

RESUMO

Human obesity has become a global epidemic that can lead to many metabolic diseases, including insulin resistance, type 2 diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver. The development of obesity is closely associated with excess food intake and energy imbalance, family history, lifestyle, psychology and other factors, but molecular mechanisms underlying the induction and development of obesity remain to be intensively studied under a variety of internal and external pathogenesis conditions. In this study, we generated two obesity models of zebrafish that were treated with a high-fat diet (HFD) or an overfeeding diet (DIO). Both HFD and DIO zebrafish exhibited higher levels of lipid accumulation, fat distribution, microvascular steatosis and ectopic accumulation of lipid droplets in liver and muscle than normal diet (NOD) fish. The comparison of transcriptome sequencing data for the livers of HFD, DIO and NOD groups identified common and specific genes and signaling pathways that are potentially associated with zebrafish obesity induced by HFD and/or DIO. These findings provide clues for further understanding the mechanisms of obesity development and preventing nutritionally induced obesity through targeting the common signaling pathways and biological processes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Peixe-Zebra , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL
7.
Fish Shellfish Immunol ; 131: 441-453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202205

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic double-stranded DNA virus, and the fatality rate of SGIV-infected grouper is more than 90%. Up to now, there is no effective methods to control the disease. Long non-coding RNAs (lncRNAs) might play an important role in individual growth and development, immune regulation and other life processes. In this study, lncRNAs were identified in Epinephelus coioides, an important economic aquaculture marine fish in China and Southeast Asia, and the regulatory relationships of lncRNAs and mRNA response to SGIV infection were analyzed. A total of 11,678 lncRNAs were identified and classified from the spleen and GS (grouper spleen) cells. 105 differentially expressed lncRNAs (DElncRNAs) were detected during SGIV infection. The lncRNAs and the regulated mRNAs were analyzed using co-expression network, lncRNA target gene annotation and GO enrichment. At 24 and 48 h after SGIV infection, 118 and 339 lncRNA-mRNA pairs in GS cells were detected, and 728 and 688 differentially expressed lncRNA-mRNA pairs in spleen were obtained, respectively. GO and KEGG were used to predict the DE lncRNAs' target genes, and deduce the DE lncRNAs-affected signaling pathways. In GS cells, lncRNAs might participate in cell part, binding and catalytic activity; and lncRNAs might be involved in immune system process and transcription factor activity in spleen. These data demonstrated that lncRNAs could regulate the expression of immune-related genes response to viral infection, and providing a new insight into understanding the complexity of immune regulatory networks mediated by lncRNAs during viral infection in teleost fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , RNA Longo não Codificante , Ranavirus , Animais , Bass/genética , Bass/metabolismo , Iridovirus/fisiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Singapura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232766

RESUMO

Autophagy and endoplasmic reticulum (ER) stress response are among the key pathways regulating cold resistance of fish through eliminating damaged cellular components and facilitating the restoration of cell homeostasis upon exposure to acute cold stress. The transmembrane protein 39A (TMEM39A) was reported to regulate both autophagy and ER stress response, but its vertebrate-specific paralog, the transmembrane protein 39B (TMEM39B), has not been characterized. In the current study, we generate tmem39b-knockout zebrafish lines and characterize their survival ability under acute cold stress. We observed that the dysfunction of Tmem39b remarkably decreased the cold resilience of both the larval and adult zebrafish. Gene transcription in the larvae exposed to cold stress and rewarming were characterized by RNA sequencing (RNA-seq) to explore the mechanisms underlying functions of Tmem39b in regulating cold resistance. The results indicate that the deficiency of Tmem39b attenuates the up-regulation of both cold- and rewarming-induced genes. The cold-induced transcription factor genes bif1.2, fosab, and egr1, and the rewarming-activated immune genes c3a.3, il11a, and sting1 are the representatives influenced by Tmem39b dysfunction. However, the loss of tmem39b has little effect on the transcription of the ER stress response- and autophagy-related genes. The measurements of the phosphorylated H2A histone family member X (at Ser 139, abbreviated as γH2AX) demonstrate that zebrafish Tmem39b protects the cells against DNA damage caused by exposure to the cold-warming stress and facilitates tissue damage repair during the recovery phase. The gene modules underlying the functions of Tmem39b in zebrafish are highly enriched in biological processes associated with immune response. The dysfunction of Tmem39b also attenuates the up-regulation of tissue C-reactive protein (CRP) content upon rewarming. Together, our data shed new light on the function and mechanism of Tmem39b in regulating the cold resistance of fish.


Assuntos
Proteína C-Reativa , Peixe-Zebra , Animais , Proteína C-Reativa/metabolismo , Estresse do Retículo Endoplasmático/genética , Histonas/metabolismo , Larva/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Animals (Basel) ; 12(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139242

RESUMO

Inability of Nile tilapia (Oreochromis niloticus) to withstand cold stress represents a major economic concern, which restricts the culture area, limits the growing period and even results in mass mortality in cold seasons. However, the cellular and molecular mechanisms determining cold susceptibility of Nile tilapia remain largely unknown. In this study, we characterized the ability of juvenile Nile tilapia to survive lethal cold stress (12 °C) and the median survival time (LT50) of the experimental fish under exposure to 12 °C cold stress was estimated as 3.14 d. After being exposed to 12 °C for 3 d, the survivors that lost equilibrium (LE) and those that swam normally (NO) were regarded as cold-sensitive and cold-tolerant, respectively. The untreated (Ctrl), NO and LE fish were subjected to histological, biochemical and gene expression analyses to explore the cellular and molecular events underlying cold susceptibility of Nile tilapia. Exposure of Nile tilapia to lethal cold stress caused systemic tissue structure changes, mitochondrial swelling and dysfunction, induction of apoptosis and endoplasmic reticulum (ER) stress-related genes and cell apoptosis. The extent of these adverse cellular and molecular events determines an individual's ability to survive cold stress. Our data indicate that mitochondria dysfunction and mitochondria-mediated cell apoptosis are the main factors limiting Nile tilapia's cold resistance.

10.
Biomedicines ; 10(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140365

RESUMO

The liver plays an essential role in multiple biological functions including metabolism, detoxification, digestion, coagulation, and homeostasis in vertebrates. The specification and differentiation of embryonic hepatoblasts, the proliferation of hepatocytes, and the hepatic tissue architecture are well documented, but molecular events governing the maturation of hepatocytes during liver development remain largely unclear. In this study, we performed a comparative transcriptome analysis of hepatocytes that were sorted by flow cytometry from developing zebrafish embryos at 60, 72, and 96 hpf. We identified 667 up-regulated and 3640 down-regulated genes in hepatocytes between 60 and 72 hpf, 606 up-regulated and 3924 down-regulated genes between 60 and 96 hpf, and 1693 up-regulated genes and 1508 down-regulated genes between 72 and 96 hpf. GO enrichment analysis revealed that key biological processes, cellular components, and molecular functions in hepatocytes between 60 to 72 hpf, such as cell cycle, DNA replication, DNA repair, RNA processing, and transcription regulation, are mainly associated with the proliferation of hepatocytes. In addition to biological processes, cellular components, and molecular functions for cell proliferation, molecular functions for carbohydrate metabolism were enriched in hepatocytes during 72 to 96 hpf. KEGG enrichment analysis identified key signaling pathways, such as cell cycle, RNA degradation, ubiquitin-mediated proteolysis, ErbB and Hedgehog signaling, basal transcription factors, Wnt signaling, and glycan degradation, which are closely associated with cell proliferation or carbohydrate metabolism in hepatocytes between 60 to 72 hpf. Newly enriched signaling pathways in hepatocytes during 72 to 96 hpf include metabolisms of pyrimidine, purine, nicotinate and nicotinamide, caffeine, glycine, serine and threonine, ABC transporters, and p53 signaling that function in metabolisms of lipid, protein and energy, cellular secretion, or detoxification, indicating the functional maturation of hepatocytes between 72 to 96 hpf. These findings provide novel clues for further understanding the functional differentiation and maturation of hepatocytes during liver development.

11.
Comput Struct Biotechnol J ; 20: 4082-4097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016718

RESUMO

Various deep learning-based architectures for molecular generation have been proposed for de novo drug design. The flourish of the de novo molecular generation methods and applications has created a great demand for the visualization and functional profiling for the de novo generated molecules. An increasing number of publicly available chemogenomic databases sets good foundations and creates good opportunities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a webserver dedicated to de novo library visualization and functional profiling. Currently, DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure visualization and identify the reported structures, (2) chemical space module for chemical space exploration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5) drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for identifying the reported targets and corresponding functional pathways. DenovoProfiling could provide structural identification, chemical space exploration, drug mapping, and target & pathway information. The comprehensive annotated information could give users a clear picture of their de novo library and could guide the further selection of candidates for chemical synthesis and biological confirmation. DenovoProfiling is freely available at http://denovoprofiling.xielab.net.

12.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886843

RESUMO

As one of the critical abiotic factors, temperature controls fish development and reproduction. However, the effects of low temperature on the transcriptional regulation of zebrafish reproduction remain largely unclear. In this study, the fecundity of zebrafish was examined after exposure to cold temperatures at 19.5 °C, 19 °C, 18.5 °C, or 18 °C. The temperature at 19 °C showed no significant influence on the fecundity of zebrafish, but temperature at 18.5 °C or 18 °C significantly blocked the spawning of females, suggesting the existence of a low temperature critical point for the spawning of zebrafish females. Based on these observations, the brains of anesthetized fish under cold stress at different cold temperatures were collected for high-throughput RNA-seq assays. Key genes, hub pathways and important biological processes responding to cold temperatures during the spawning of zebrafish were identified through bioinformatic analysis. The number of down-regulated and up-regulated genes during the temperature reduction from egg-spawning temperatures at 19.5 °C and 19 °C to non-spawning temperatures at 18.5 °C and 18 °C were 2588 and 2527 (fold change ≥ 1.5 and p-value ≤ 0.01), respectively. Venn analysis was performed to identify up- and down-regulated key genes. KEGG enrichment analysis indicated that the hub pathways overrepresented among down-regulated key genes included the GnRH signaling pathway, vascular smooth muscle contraction, C-type lectin receptor signaling pathway, phosphatidylinositol signaling system and insulin signaling pathway. GO enrichment analysis of down-regulated key genes revealed the most important biological processes inhibited under non-spawning temperatures at 18.5 °C and 18 °C were photoreceptor cell outer segment organization, circadian regulation of gene expression and photoreceptor cell maintenance. Furthermore, 99 hormone-related genes were found in the brain tissues of non-spawning and spawning groups, and GnRH signaling pathway and insulin signaling pathway were enriched from down-regulated genes related to hormones at 18.5 °C and 18 °C. Thus, these findings uncovered crucial hormone-related genes and signaling pathways controlling the spawning of female zebrafish under cold stress.


Assuntos
Insulinas , Peixe-Zebra , Animais , Temperatura Baixa , Resposta ao Choque Frio/genética , Feminino , Perfilação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Insulinas/genética , Transdução de Sinais , Transcriptoma , Peixe-Zebra/metabolismo
13.
Microbiol Spectr ; 10(4): e0065722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35730951

RESUMO

Inflammatory bowel disease (IBD) has become a global public health problem. Although the pathogenesis of the disease is unknown, a potential association between the gut microbiota and inflammatory signatures has been established. Probiotics, especially Lactobacillus or Bifidobacterium, are orally taken as food supplements or microbial drugs by patients with IBD or gastrointestinal disorders due to their safety, efficacy, and power to restore the gut microenvironment. In the current study, we investigated the comprehensive effects of probiotic bacterial consortia consisting of Lactobacillus reuteri, Lactobacillus gasseri, Lactobacillus acidophilus (Lactobacillus spp.), and Bifidobacterium lactis (Bifidobacterium spp.) or their metabolites in a dextran sodium sulfate (DSS)-induced colitis mouse model. Our data demonstrate that probiotic consortia not only ameliorate the disease phenotype but also restore the composition and structure of the gut microbiota. Moreover, the effect of probiotic consortia is better than that of any single probiotic strain. The results also demonstrate that mixed fermentation metabolites are capable of ameliorating the symptoms of gut inflammation. However, the administration of metabolites is not as effective as probiotic consortia with respect to phenotypic characteristics, such as body weight, disease activity index (DAI), and histological score. In addition, mixed metabolites led only to changes in intestinal flora composition. In summary, probiotic consortia and metabolites could exert protective roles in the DSS-induced colitis mouse model by reducing inflammation and regulating microbial dysbiosis. These findings from the current study provide support for the development of probiotic-based microbial products as an alternative therapeutic strategy for IBD. IMPORTANCE IBD is a chronic nonspecific inflammatory disease. IBD is characterized by a wide range of lesions, often involving the entire colon, and is characterized mainly by ulcers and erosions of the colonic mucosa. In the present study, we investigated the efficacy of probiotics on the recovery of gut inflammation and the restoration of gut microecology. We demonstrate that probiotic consortia have a superior effect in inhibiting inflammation and accelerating recovery compared with the effects observed in the control group or groups administered with a single strain. These results support the utilization of probiotic consortia as an alternative therapeutic approach to treat IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Probióticos , Animais , Bifidobacterium/fisiologia , Colite/tratamento farmacológico , Colite/terapia , Colo/microbiologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/terapia , Lactobacillus/fisiologia , Camundongos , Probióticos/farmacologia , Probióticos/uso terapêutico
14.
Front Cell Infect Microbiol ; 11: 788836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950610

RESUMO

The diagnosis of endometriosis is typically delayed by years for the unexclusive symptom and the traumatic diagnostic method. Several studies have demonstrated that gut microbiota and cervical mucus potentially can be used as auxiliary diagnostic biomarkers. However, none of the previous studies has compared the robustness of endometriosis classifiers based on microbiota of different body sites or demonstrated the correlation among microbiota of gut, cervical mucus, and peritoneal fluid of endometriosis, searching for alternative diagnostic approaches. Herein, we enrolled 41 women (control, n = 20; endometriosis, n = 21) and collected 122 well-matched samples, derived from feces, cervical mucus, and peritoneal fluid, to explore the nature of microbiome of endometriosis patients. Our results indicated that microbial composition is remarkably distinguished between three body sites, with 19 overlapped taxa. Moreover, endometriosis patients harbor distinct microbial communities versus control group especially in feces and peritoneal fluid, with increased abundance of pathogens in peritoneal fluid and depletion of protective microbes in feces. Particularly, genera of Ruminococcus and Pseudomonas were identified as potential biomarkers in gut and peritoneal fluid, respectively. Furthermore, novel endometriosis classifiers were constructed based on taxa selected by a robust machine learning method. These results demonstrated that gut microbiota exceeds cervical microbiota in diagnosing endometriosis. Collectively, this study reveals important insights into the microbial profiling in different body sites of endometriosis, which warrant future exploration into the role of microbiota in endometriosis and highlighted values on gut microbiota in early diagnosis of endometriosis.


Assuntos
Endometriose , Microbioma Gastrointestinal , Microbiota , Diagnóstico Precoce , Endometriose/diagnóstico , Fezes , Feminino , Humanos , RNA Ribossômico 16S
15.
Biomedicines ; 9(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572426

RESUMO

SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2-/- mice. Herein, we explored the roles of SMC2 in the liver development of zebrafish. The depletion of SMC2, with the CRISPR/Cas9-dependent gene knockout approach, led to a small liver phenotype. The specification of hepatoblasts was unaffected. Mechanistically, extensive apoptosis occurred in the liver of SMC2 mutants, which was mainly associated with the activation of the p53-dependent apoptotic pathway. Moreover, an aberrant activation of a series of apoptotic pathways in SMC2 mutants was involved in the defective chromosome segregation and subsequent DNA damage. Therefore, our findings demonstrate that SMC2 is necessary for zebrafish liver development.

16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074030

RESUMO

The ability of organisms to quickly sense and transduce signals of environmental stresses is critical for their survival. Ca2+ is a versatile intracellular messenger involved in sensing a wide variety of stresses and regulating the subsequent cellular responses. So far, our understanding for calcium signaling was mostly obtained from ex vivo tissues and cultured cell lines, and the in vivo spatiotemporal dynamics of stress-triggered calcium signaling in a vertebrate remains to be characterized. Here, we describe the generation and characterization of a transgenic zebrafish line with ubiquitous expression of GCaMP6s, a genetically encoded calcium indicator (GECI). We developed a method to investigate the spatiotemporal patterns of Ca2+ events induced by heat stress. Exposure to heat stress elicited immediate and transient calcium signaling in developing zebrafish. Cells extensively distributed in the integument of the head and body trunk were the first batch of responders and different cell populations demonstrated distinct response patterns upon heat stress. Activity of the heat stress-induced calcium signaling peaked at 30 s and swiftly decreased to near the basal level at 120 s after the beginning of exposure. Inhibition of the heat-induced calcium signaling by LaCl3 and capsazepine and treatment with the inhibitors for CaMKII (Ca²2/calmodulin-dependent protein kinase II) and HSF1 (Heat shock factor 1) all significantly depressed the enhanced heat shock response (HSR). Together, we delineated the spatiotemporal dynamics of heat-induced calcium signaling and confirmed functions of the Ca2+-CaMKII-HSF1 pathway in regulating the HSR in zebrafish.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Proteínas de Fluorescência Verde/genética , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Hibridização In Situ , Lantânio/farmacologia , Microscopia de Fluorescência , Análise Espaço-Temporal , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
17.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809683

RESUMO

Low temperature stress represents a major threat to the lives of both farmed and wild fish species. However, biological pathways determining the development of cold resistance in fish remain largely unknown. Zebrafish larvae at 96 hpf were exposed to lethal cold stress (10 °C) for different time periods to evaluate the adverse effects at organism, tissue and cell levels. Time series RNA sequencing (RNA-seq) experiments were performed to delineate the transcriptomic landscape of zebrafish larvae under cold stress and during the subsequent rewarming phase. The genes regulated by cold stress were characterized by progressively enhanced or decreased expression, whereas the genes associated with rewarming were characterized by rapid upregulation upon return to normal temperature (28 °C). Genes such as trib3, dusp5 and otud1 were identified as the representative molecular markers of cold-induced damages through network analysis. Biological pathways involved in cold stress responses were mined from the transcriptomic data and their functions in regulating cold resistance were validated using specific inhibitors. The autophagy, FoxO and MAPK (mitogen-activated protein kinase) signaling pathways were revealed to be survival pathways for enhancing cold resistance, while apoptosis and necroptosis were the death pathways responsible for cold-induced mortality. Functional mechanisms of the survival-enhancing factors Foxo1, ERK (extracellular signal-regulated kinase) and p38 MAPK were further characterized by inhibiting their activities upon cold stress and analyzing gene expression though RNA-seq. These factors were demonstrated to determine the cold resistance of zebrafish through regulating apoptosis and p53 signaling pathway. These findings have provided novel insights into the stress responses elicited by lethal cold and shed new light on the molecular mechanisms underlying cold resistance of fish.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Transdução de Sinais , Peixe-Zebra/fisiologia , Adaptação Fisiológica/genética , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Larva/genética , Transdução de Sinais/genética , Análise de Sobrevida , Transcrição Gênica , Transcriptoma/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669601

RESUMO

Lead (Pb) is one of the major heavy metals that are toxic to vertebrates and usually considered as environmental pollutants. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification and excretion of toxic lead. In this study, we found that the transcriptional and translational expression of zebrafish abcc4 was significantly induced under lead exposure in developing zebrafish embryos and adult tissues. Overexpression of zebrafish Abcc4 markedly decreased the cytotoxicity and accumulation of lead in pig renal proximal tubule cell line (LLC-PK1 cells). To further understand the functions of zebrafish Abcc4 in lead detoxification, the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system was used to create an abcc4-/- mutant zebrafish line. In comparison with the wild-type (WT) zebrafish, the abcc4-/- mutants showed a higher death rate and lead accumulation upon exposure to lead. Furthermore, a stable abcc4-transgenic zebrafish line was successfully generated, which exerted stronger ability to detoxify and excrete lead than WT zebrafish. These findings indicate that zebrafish Abcc4 plays a crucial role in lead detoxification and cellular efflux and could be used as a potential biomarker to monitor lead contamination in a water environment.


Assuntos
Técnicas de Inativação de Genes , Chumbo/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Transporte Biológico , Regulação da Expressão Gênica no Desenvolvimento , Inativação Metabólica , Células LLC-PK1 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação/genética , Suínos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
19.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445609

RESUMO

Most currently available bioreactors have some defects in the expression, activity, or purification of target protein and peptide molecules, whereas the mucus gland of fish can overcome these defects to become a novel bioreactor for the biopharmaceutical industry. In this study, we have evaluated the practicability of developing a mucus gland bioreactor in loach (Paramisgurnus dabryanus). A transgenic construct pT2-krt8-IFN1 was obtained by subcloning the promoter of zebrafish keratin 8 gene and the type I interferon (IFN1) cDNA of grass carp into the SB transposon. The IFN1 expressed in CIK cells exhibited an antiviral activity against the replication of GCRV873 and activated two genes downstream of JAK-STAT signaling pathway. A transgenic loach line was then generated by microinjection of the pT2-krt8-IFN1 plasmids and in vitro synthesized capped SB11 mRNA. Southern blots indicated that a single copy of IFN1 gene was stably integrated into the genome of transgenic loach. The expression of grass carp IFN1 in transgenic loaches was detected with RT-PCR and Western blots. About 0.0825 µg of grass carp IFN1 was detected in 20 µL mucus from transgenic loaches. At a viral titer of 1 × 103 PFU/mL, plaque numbers on plates containing mucus from transgenic loaches reduced by 18% in comparison with those of the control, indicating that mucus of IFN1-transgenic loaches exhibited an antiviral activity. Thus, we have successfully created a mucus gland bioreactor that has great potential for the production of various proteins and peptides.


Assuntos
Reatores Biológicos , Cipriniformes/fisiologia , Glândulas Exócrinas/metabolismo , Muco/metabolismo , Animais , Animais Geneticamente Modificados , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Interferons/metabolismo , Mutagênese Insercional
20.
J Fish Biol ; 98(3): 842-854, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33258111

RESUMO

The aquaculture of tilapia (Oreochromis sp.) is adversely affected by the sensitivity to cold stress. A large number of genes in tilapia were found to be regulated by cold stress, but their functions and mechanisms in cold tolerance remain largely unknown, partially due to the lack of a suitable in vitro model. An immortal neural cell line designated as tilapia brain neural (TBN) was established from brain tissue of the genetically improved farmed tilapia strain of Nile tilapia (Oreochromis niloticus). The TBN cells show a neuron-like morphology at low density and form a fibroblast-like monolayer at high density. Transcriptome profiling through RNA-sequencing revealed that a total of 15,011 genes were expressed in the TBN cells. The TBN cells express a wide array of marker genes for neural cells. A comparative analysis of the featured genes among the 17 cell clusters isolated from the subventricular zone of mouse brain revealed the highest transcriptome similarity between the TBN cells and the transient amplifying progenitors (TAPs). The TBN cells tolerate relatively high culture temperatures, and the highest growth rate was observed for the cells cultured at 32°C compared with those at 30°C, 28°C and 26°C. Nonetheless, this cell line is cold sensitive. Exposure of the cells to 16°C or lower temperatures significantly decreased cell confluences and induced apoptosis. The TBN cells were more sensitive to cold stress than the ZF4 cells (embryonic zebrafish fibroblasts). Moreover, the TBN cells can be efficiently transfected through electroporation. This study provides an invaluable research tool to understand the nature of cold sensitivity of tilapia and to dissect the function and mechanism of genes in regulating cold tolerance of fish.


Assuntos
Encéfalo/citologia , Linhagem Celular , Ciclídeos/fisiologia , Animais , Temperatura Baixa , Perfilação da Expressão Gênica , Camundongos , Neurônios/citologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...