Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 53(53): 7254-7257, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660920

RESUMO

During photocatalytic water oxidation, n-SrTiO3(100) demonstrated near 100% Faradaic efficiency for O2 evolution with nano- (30 ns) and femto- (150 fs) second pulsed laser excitation of the band gap, despite surface rearrangements attributed to the high peak power (300 MW cm-2). Therefore, these results establish a methodology for tracking intermediates of the water oxidation cycle at the n-SrTiO3(100) surface from the picosecond time scales of charge transfer through to the millisecond time scales of O2 evolution.

2.
Rev Sci Instrum ; 84(6): 063903, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23822353

RESUMO

Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

3.
Phys Rev Lett ; 100(21): 217003, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18518627

RESUMO

We report pressure-tuned Raman and x-ray diffraction data of Bi(1.98.)Sr(2.06)Y(0.68)Cu(2)O(8+delta) revealing a critical pressure at 21 GPa with anomalies in electronic Raman background, electron-phonon coupling lambda, spectral weight transfer, density dependent behavior of phonons and magnons, and a compressibility change in the c axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the spectral changes suggest that the critical pressure at 21 GPa is related to the critical point at optimal doping.

4.
Phys Rev Lett ; 96(15): 157003, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16712188

RESUMO

A recent highlight in the study of high-T(c) superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, nonsuperconducting single-layer Bi-cuprate (Bi2Sr2CuO6). In addition to the appearance of a strong overall weakening, we also find that the weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.

5.
Phys Rev Lett ; 95(11): 117001, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16197033

RESUMO

High resolution angle-resolved photoemission spectroscopy data along the (0,0)-(pi,pi) nodal direction with significantly improved statistics reveal fine structure in the electron self-energy of the underdoped (La2-xSrx)CuO4 samples in the normal state. Fine structure at energies of (40-46) meV and (58-63) meV, and possible fine structure at energies of (23-29) meV and (75-85) meV, have been identified. These observations indicate that, in (La2-xSrx)CuO4, more than one bosonic modes are involved in the coupling with electrons.

6.
Nature ; 432(7015): 1 p following 291; discussion following 291, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15568212

RESUMO

In conventional superconductivity, sharp phonon modes (oscillations in the crystal lattice) are exchanged between electrons within a Cooper pair, enabling superconductivity. A critical question in the study of copper oxides with high critical transition temperature (Tc) is whether such sharp modes (which may be more general, including, for example, magnetic oscillations) also play a critical role in the pairing and hence the superconductivity. Hwang et al. report evidence that sharp modes (either phononic or magnetic in origin) are not important for superconductivity in these materials, but we show here that their conclusions are undermined by the insensitivity of their experiment to a crucial physical effect.

7.
Phys Rev Lett ; 93(11): 117003, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447370

RESUMO

Angle-resolved photoemission spectroscopy on optimally doped Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+delta) uncovers a coupling of the electronic bands to a 40 meV mode in an extended k-space region away from the nodal direction, leading to a new interpretation of the strong renormalization of the electronic structure seen in Bi2212. Phenomenological agreements with neutron and Raman experiments suggest that this mode is the B(1g) oxygen bond-buckling phonon. A theoretical calculation based on this assignment reproduces the electronic renormalization seen in the data.

8.
Phys Rev Lett ; 93(11): 117004, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447371

RESUMO

We explore manifestations of electron-phonon coupling on the electron spectral function for two phonon modes in the cuprates exhibiting strong renormalizations with temperature and doping. Applying simple symmetry considerations and kinematic constraints, we find that the out-of-plane, out-of-phase O buckling mode (B(1g)) involves small momentum transfers and couples strongly to electronic states near the antinode while the in-plane Cu-O breathing modes involve large momentum transfers and couples strongly to nodal electronic states. Band renormalization effects are found to be strongest in the superconducting state near the antinode, in full agreement with angle-resolved photoemission spectroscopy data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA