Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0210700, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640929

RESUMO

Reducing the number of influenza A virus (IAV) infected pigs at weaning is critical to minimize IAV spread to other farms. Sow vaccination is a common measure to reduce influenza levels at weaning. However, the impact of maternally-derived antibodies on IAV infection dynamics in growing pigs is poorly understood. We evaluated the effect of maternally-derived antibodies at weaning on IAV prevalence at weaning, time of influenza infection, number of weeks that pigs tested IAV positive, and estimated quantity of IAV in nursery pigs. We evaluated 301 pigs within 10 cohorts for their influenza serological (seroprevalence estimated by hemagglutination inhibition (HI) test) and virological (prevalence) status. Nasal swabs were collected weekly and pigs were bled 3 times throughout the nursery period. There was significant variability in influenza seroprevalence, HI titers and influenza prevalence after weaning. Increase in influenza seroprevalence at weaning was associated with low influenza prevalence at weaning and delayed time to IAV infection throughout the nursery. Piglets with IAV HI titers of 40 or higher at weaning were also less likely to test IAV positive at weaning, took longer to become infected, tested IAV RT-PCR positive for fewer weeks, and had higher IAV RT-PCR cycle threshold values compared to piglets with HI titers less than 40. Our findings suggest that sow vaccination or infection status that results in high levels of IAV strain-specific maternally-derived antibodies may help to reduce IAV circulation in both suckling and nursery pigs.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Animais , Feminino , Reação em Cadeia da Polimerase em Tempo Real , Suínos
2.
Front Vet Sci ; 5: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29435454

RESUMO

Garbage management represents a potential pathway of HPAI-virus infection for commercial poultry operations as multiple poultry premises may share a common trash collection service provider, trash collection site (e.g., shared dumpster for multiple premises) or disposal site (e.g., landfill). The types of potentially infectious or contaminated material disposed of in the garbage has not been previously described but is suspected to vary by poultry industry sector. A survey of representatives from the broiler, turkey, and layer sectors in the United States revealed that many potentially contaminated or infectious items are routinely disposed of in the trash on commercial poultry premises. On-farm garbage management practices, along with trash hauling and disposal practices are thus key components that must be considered to evaluate the risk of commercial poultry becoming infected with HPAI virus.

3.
Front Vet Sci ; 3: 117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28097122

RESUMO

Animal diseases such as foot-and-mouth disease (FMD) have the potential to severely impact food animal production systems. Paradoxically, the collateral damage associated with the outbreak response may create a larger threat to the food supply, social stability, and economic viability of rural communities than the disease itself. When FMD occurs in domestic animals, most developed countries will implement strict movement controls in the area surrounding the infected farm(s). Historically, stopping all animal movements has been considered one of the most effective ways to control FMD and stop disease spread. However, stopping all movements in an area comes at a cost, as there are often uninfected herds and flocks within the control area. The inability to harvest uninfected animals and move their products to processing interrupts the food supply chain and has the potential to result in an enormous waste of safe, nutritious animal products, and create animal welfare situations. In addition, these adverse effects may negatively impact agriculture businesses and the related economy. Effective disease control measures and the security of the food supply thus require a balanced approach based on science and practicality. Evaluating the risks associated with the movement of live animals and products before an outbreak happens provides valuable insights for risk management plans. These plans can optimize animal and product movements while preventing disease spread. Food security benefits from emergency response plans that both control the disease and keep our food system functional. Therefore, emergency response plans must aim to minimize the unintended negative consequence to farmers, food processors, rural communities, and ultimately consumers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...