Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132853

RESUMO

While heavy metals (HM) have been considered in recent decades to be the most common and problematic pollutants, the expansion of the list of pollutants due to the active use of carbon nanotubes (CNT) raises new questions about the benefit and harm of HM released to nature individually or fixed on CNT walls. A pot experiment was conducted to compare the effect of two classes of potential pollutants-metal salts of Pb, Mn, Cu, Zn, Cd, and Ni; and functionalized CNTs with COOH, MnO2, Fe3O4, and MnO2-Fe3O4-applied in soil, on the elemental transfer, the bioactive compounds accumulation, and the antioxidant activity in lettuce. While CNTs mainly increased the elemental transfer from soil to leaves, HM salts strongly obstructed it. In the presence of CNTs, the antioxidant activity in lettuce leaves correlated with the transfer of elements from soil to root and from root to leaves. The excess of HMs in soil induced a greater variation of the polyphenols quantity and antioxidant activity than the excess of CNTs. It might be assumed that lettuce perceived HMs as a more aggressive stressor than CNTs and more strongly activated the defense mechanism, showing the reduction of the element transfer and enhancing of total polyphenol production and antioxidant activity.

2.
Plants (Basel) ; 12(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653877

RESUMO

The aim of this work was to evaluate the effect of six nanomaterials, namely CNT-COOH, CNT-MnO2, CNT-Fe3O4, CNT-MnO2-Fe3O4, MnO2, and Fe3O4 on lettuceTo determine the impact of nanomaterials on lettuce, the results obtained were compared with those for the control plant, grown in the same conditions of light, temperature, and humidity but without the addition of nanomaterial. The study found that the content of bioactive compounds and the antioxidant capacity varied in the treated plants compared to the control ones, depending on the nanomaterial. The use of CNTs functionalized with metal oxides increases the elemental concentration of lettuce leaves for the majority of the elements. On the contrary, metal oxide nanoparticles and CNT functionalized with carboxyl groups induce a decrease in the concentration of many elements. Soil amending with MnO2 affects the content of more than ten elements in leaves. Simultaneous application of CNT and MnO2 stimulates the elemental translocation of all elements from roots to leaves, but the simultaneous use of CNT and Fe3O4 leads to the most intense translocation compared to the control other than Mo.

3.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677817

RESUMO

Heavy metals represent a large category of pollutants. Heavy metals are the focus of researchers around the world, mainly due to their harmful effects on plants. In this paper, the influence of copper, cadmium, manganese, nickel, zinc and lead, present in soil in different concentrations (below the permissible limit, the maximum permissible concentration and a concentration higher than the maximum permissible limit) on lettuce (Lactuca sativa L.) was evaluated. For this purpose, the authors analyzed the variation of photosynthetic pigments, total polyphenols, antioxidant activity and the elemental content in the studied plants. The experimental results showed that the variation of the content of biologically active compounds, elemental content and the antioxidant activity in the plants grown in contaminated soil, compared to the control plants, depends on the type and concentration of the metal added to the soil. The biggest decrease was recorded for plants grown in soil treated with Ni I (-42.38%) for chlorophyll a, Zn II (-32.92%) for chlorophyll b, Ni I (-40.46%) for carotenoids, Pb I (-40.95%) for polyphenols and Cu III (-29.42%) for DPPH. On the other hand, the largest increase regarding the amount of biologically active compounds was registered for Mn I (88.24%) in the case of the chlorophyll a, Mn I (65.56%) for chlorophyll b, Pb I (116.03%) for carotenoids, Ni III (1351.23%) for polyphenols and Ni III (1149.35%) for DPPH.


Assuntos
Metais Pesados , Poluentes do Solo , Lactuca , Clorofila A , Antioxidantes/farmacologia , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise , Solo/química , Carotenoides , Poluentes do Solo/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-36673692

RESUMO

Chemical analysis was performed on sediment core samples collected from three salt lakes, Amara Lake, Caineni Lake, and Movila Miresii Lake, located in the northeast of the Romanian Plain. The concentration of 10 main elements, 6 heavy metals (HMs), 8 rare earth elements (REEs), and 10 trace elements (TEs)-determined using neutron activation analysis (NAA)-showed variability dependent on the depth sections, lake genesis and geochemical characteristics (oxbow, fluvial harbor/liman and loess saucer type). The assessment of pollution indices (contamination factor, pollution load index, geoaccumulation index, and enrichment factor) highlighted low and moderate degrees of contamination for most of the investigated elements. Principal component analysis (PCA) extracted three principal components, explaining 70.33% (Amara Lake), 79.92% (Caineni Lake), and 71.42% (Movila Miresii Lake) of the observed variability. The principal components extracted were assigned to pedological contribution (37.42%-Amara Lake, 55.88%-Caineni Lake, and 15.31%-Movila Miresii Lake), salts depositions (due to the lack of a constant supply of freshwater and through evaporation during dry periods), atmospheric deposition (19.19%-Amara Lake, 13.80%-Caineni Lake, and 10.80%-Movila Miresii Lake), leaching from soil surface/denudation, rock weathering, and mixed anthropogenic input (e.g., agricultural runoff, wastewater discharges) (13.72%-Amara Lake, 10.24%-Caineni Lake, and 45.31%-Movila Miresii Lake).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lagos , Monitoramento Ambiental , Romênia , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Metais Pesados/análise , China , Medição de Risco
5.
Artigo em Inglês | MEDLINE | ID: mdl-36232178

RESUMO

To determine the nature and origin of the unconsolidated bottom sediments, as well as to demonstrate and quantify the presence of Presumably Contaminating Elements (PCE) in the Serbian Danube River, as a novelty, the mass fractions on nine major elements as oxides-SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O, as well as Sc, V, Cr, Co, Ni, Cu, Zn, As, Rb, Sr, Zr, Sb, Cs, Ba, La, Hf, Ta, W, Th, and U were determined by Instrumental Neutron Activation Analysis (INAA) in 13 sediment samples collected between Belgrade and Iron Gate 2 dam. INAA was chosen for its ability to perform elemental analysis without any preliminary sample treatment that could introduce systematic errors. The distribution of major elements was relatively uniform, with the sampling locations having less influence. Concerning the trace elements, excepting the PCE Cr, Ni, Cu, Zn, As, and Sb, their distributions presented the same remarkable similarity to the Upper Continental Crust (UCC), North American Shale Composite (NASC), Average Bottom Load (ABL), and Average Dobrogea Loess (AVL), and were in good concordance with the location of the Serbian Danube River in the Pannonian Plain. In the case of considered PCE, both Enrichment Factor and Pollution Load Index showed values higher than the pollution threshold, which pointed towards a significant anthropogenic contamination, and rising concern to what extent the water quality and biota could be affected.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos/análise , Ferro/análise , Óxido de Magnésio/análise , Metais Pesados/análise , Rios , Sérvia , Dióxido de Silício/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
6.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956785

RESUMO

Abiotic stress agents, among them metal stress, can cause oxidative damage to plant cells. In defense, plants can increase the production of secondary metabolites in order to mitigate the harmful effects caused by them. The purpose of this work was to evaluate the effect of two types of copper salts (CuSO4 and Cu(NO3)2), added in two different amounts in soil (150 mg/kg, respectively 300 mg/kg), on assimilating pigments, total polyphenols, antioxidant activity and the elemental composition of wheat. The obtained results were compared with those from control plants grown in the same conditions but without copper salts. The amount of assimilating pigments, total polyphenols, and antioxidant activity respectively increases or decreases in the plants treated with copper salts compared to the control depending on the stage of development of the plant. No significant damage induced in the leaves of the wheat plants treated with the selected salts was observed following the TEM analysis. In six-week-old plants it was observed by EDX analysis that the salts are transformed into nanoparticles. The bioactive compounds, elemental composition and their interaction is influenced by concentration of metal's salt, type of salt and exposure period.


Assuntos
Antioxidantes , Triticum , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cobre/farmacologia , Estresse Oxidativo , Raízes de Plantas/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Sais/metabolismo , Sais/farmacologia , Triticum/metabolismo
7.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947760

RESUMO

The present work aims to follow the influence of TiO2 nanoparticles (TiO2 NPs) on bioactive compounds, the elemental content of wheat, and on wheat leaves' ultrastructure. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The concentration of phenolic compounds, assimilation pigments, antioxidant capacity, elemental content, as well as the ultrastructural changes that may occur in the wheat plants grown in the presence or absence of TiO2 NPs were evaluated. In plants grown in the presence of TiO2 NPs, the amount of assimilating pigments and total polyphenols decreased compared to the control sample, while the antioxidant activity of plants grown in amended soil was higher than those grown in control soil. Following ultrastructural analysis, no significant changes were observed in the leaves of TiO2-treated plants. Application of TiO2 NPs to soil caused a significant reaction of the plant to stress conditions. This was revealed by the increase of antioxidant capacity and the decrease of chlorophyll, total polyphenols, and carotenoids. Besides, the application of TiO2 NPs led to significant positive (K, Zn, Br, and Mo) and negative (Na, Mn, Fe, As, Sr, Sb, and Ba) variation of content.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34201491

RESUMO

In the present study, the effects of copper oxide nanoparticles (CuO NPs) on bioactive compounds, the ultrastructural modifications which can occur, and elemental content of wheat were investigated. Changes in the wheat plants grown in presence or absence of CuO NPs were estimated. The application of CuO NPs decreased the amounts of chlorophylls and carotenoids and increased the amounts of polyphenols and antioxidant capacity. Ultrastructural analysis showed that the plants treated with CuO NPs were negatively affected. Soil amending completely inhibited the accumulation of seventeen elements, while K, Br, Al, and Zn were accumulated and Cl, Na, Ba, and Sr content decreased in wheat samples, regardless of the type of NPs applied. The application of chemically obtained NPs induced the most significant changes, completely blocking the assimilation of Fe, Mo, As, Sb, and Sm, and favoring much higher accumulation of Br than biogenic NPs. The decrease in chlorophylls and carotenoids is correlated with increase in antioxidant capacity, and occurs with increase of Mo, Al, Mg, K, Zn, and Ca content. The behavior of total polyphenols is correlated with Br content, and antagonist to Al behavior. From the point of view of bioactive compounds, the most affected plants were those that grew in the presence of CuO-NP-cel, while from the point of view of elementary analysis, the most affected plants were those grown in the presence of CuO-NP. By corroborating the obtained results, it was found that the CuO NPs have a negative effect on wheat plants.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre/toxicidade , Íons , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Solo , Triticum
9.
Environ Sci Pollut Res Int ; 28(33): 44877-44889, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33851297

RESUMO

Recent studies show that lanthanides (Ln) are becoming emerging pollutants due to their wide application in new technologies, but their environmental fate, transport, and possible accumulation are still relatively unknown. This study aims to determine major and trace elements including Ln in the Danube River sediment which either belong or close to the Iron Gate Reservoir. The Iron Gate Reservoir is characterized by accumulation of sediments as an effect of building hydropower dam Iron Gate I. The surface sediments were collected on the Danube River-1141 to 864 km and three tributaries along this waterway. Two samples of deep sediments were used for comparison. The results indicate the significant upward enrichment of Zn, Sb, Cr, Nd, and Dy in sediments belongs to the Iron Gate Reservoir. The sample 4-Smed is labelled as a hot spot of contamination with Zn, Cr, As, Sb, Nd, and Dy. Also, a trend of increasing concentration in the time period from 1995 to 2016 was found for elements Zn, Cr, and Ni in sediment samples in the Iron Gate Reservoir. Chemometric analysis shows the grouping of sample sites into clusters characterized by the following properties: (i) increased concentration of all measured elements (samples within the Iron Gate Reservoir); (ii) increased Cu concentration (11-Pek); and (iii) lower concentrations of the measured elements (deep sediments). The data presented hereby contribute to the monitoring of pollution of the River Danube sediments and give the first view of Ln profile in the studied sediments.


Assuntos
Elementos da Série dos Lantanídeos , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Ferro , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análise
10.
Int J Phytoremediation ; 19(11): 1053-1058, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28441036

RESUMO

The cyanobacterium Arthrospira (Spirulina) platensis was used to study the process of silver biosorption. Effects of various parameters such as contact time, dosage of biosorbent, initial pH, temperature, and initial concentration of Ag(I) were investigated for a batch adsorption system. The optimal biosorption conditions were determined as pH 5.0, biosorbent dosage of 0.4 g, and initial silver concentration of 30 mg/L. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich models - however, the Freundlich model provided a better fit to the experimental data. The kinetic data fit the pseudo-second-order model well, with a correlation coefficient of 0.99. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the adsorption process of silver ion by spirulina biomass was exothermic and spontaneous (ΔG° < 0), and exothermic (ΔH° < 0) process. The biosorption capacity of biomass A. platensis serves as a basis for the development of green technology for environmental remediation.


Assuntos
Biodegradação Ambiental , Prata , Spirulina , Purificação da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Termodinâmica , Água
11.
Environ Sci Pollut Res Int ; 24(6): 5717-5732, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28039634

RESUMO

The total content of 8 major and 32 trace elements in four species of mosses and two of lichens as well as neighboring soil and rocks collected from different places of the Livingston Island Antarctica was determined by instrumental neutron activation analysis. The main goals of the project consisted of evidencing the possible trace of anthropogenic contamination as well as the influence of altitude on the distribution of considered elements. In the absence of a unanimously accepted descriptor, enrichment factor, geo-accumulation, and pollution load indices with respect to soil and rocks were used. The data, interpreted within the model of a reference plant, were compared with previous studies regarding the same organisms in similar geographic and climatological areas. The experimental results evidenced different capacity of mosses and lichens to retain the considered elements, but within experimental uncertainties, no traces of anthropogenic pollution were found. At the same time, it was found that the content of most of the elements decreased with the altitude.


Assuntos
Briófitas , Poluição Ambiental , Líquens , Análise de Ativação de Nêutrons , Oligoelementos/análise , Altitude , Regiões Antárticas , Monitoramento Ambiental/métodos , Ilhas , Solo
12.
Bull Environ Contam Toxicol ; 98(2): 262-269, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27889805

RESUMO

Moss biomonitoring using the species Hypnum cupressiforme (Hedw.) and Pleurocarpous sp was applied to study air pollution in the Republic of Moldova. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Hf, Ta, W, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Geographical distribution maps were prepared to point out the regions most affected by air pollution and relate this to potential sources of contamination. Median values of the elements studied were compared with data from the European moss biomonitoring program. The cities of Chisinau and Balti were determined to experience particular environmental stress.


Assuntos
Poluição do Ar/análise , Bryopsida/química , Monitoramento Ambiental , Metais/análise , Moldávia , Análise de Ativação de Nêutrons , Análise de Componente Principal , Espectrofotometria Atômica
13.
Bull Environ Contam Toxicol ; 96(5): 650-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27003805

RESUMO

The moss-bag transplant technique was used to investigate the kinetics of the accumulation of 38 elements in Sphagnum girgensohni moss samples in the highly polluted municipality of Baia Mare, Romania. The moss samples collected from the unpolluted Vitosha Mountain Natural Reserve, Bulgaria, were analyzed after 1, 2, 3, and 4 months of exposure, respectively. The ANOVA method was used to assay the statistical significance of the observed changes in elemental content, as determined by neutron activation analysis. The content of Zn, Se, As, Ag, Cd, and Sb increased steadily, while that of physiologically active K and Cl, as well as Rb and Cs, decreased exponentially. The study showed that an adequate application of the moss transplant technique in an urban environment should consider the exposure time as a critical parameter, since particular elements are depleted in the moss at sites with high atmospheric loading of metals.


Assuntos
Poluentes Ambientais/análise , Sphagnopsida/química , Arsênio/análise , Cidades , Monitoramento Ambiental/métodos , Indústrias , Metais/análise , Análise de Ativação de Nêutrons , Romênia , Fatores de Tempo
14.
Mar Pollut Bull ; 58(6): 827-31, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19261305

RESUMO

The vertical distributions of five potential pollutants - Zn, As, Br, Sn, and Sb - were determined via epithermal neutron activation in the upper 50cm of unconsolidated sediments from the Black Sea, which were collected 600m below sea surface. This analysis demonstrated increasing concentrations towards the upper limits of sediments, which were greater than alert concentrations in the case of As and Br, and in accordance with Romanian Environment Regulations. The utilization of Chernobyl (137)Cs as a time marker allowed for dating of this region to the last 100 years.


Assuntos
Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Antimônio/análise , Arsênio/análise , Bromo/análise , Radioisótopos de Césio , Análise de Ativação de Nêutrons , Oceanos e Mares , Tempo , Estanho/análise , Zinco/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-16319014

RESUMO

Neutron Activation Analysis (NAA) was performed for the determination of 25 elements in hair, toenails, and PM2.5 (particles smaller than 2.5 microm in aerodynamic diameter) to assess how human tissues of occupational staff and inhaled particles follow the industrial exposure of Gdansk Phosphatic fertilizer plant in Poland. Statistical analysis was used to elucidate this exposure. The results obtained were compared using box and whiskers plot and the parametric t-test and nonparametric Mann-Whitney U- test. The comparison showed a statistically significant difference between workers and control group concerning for example Br, Ca, Cl, La, Mn, Sm, U and V in hair, Cu, Dy, La, Sm, Ti and U in toenails and Al, As, Cl, I, K, La, Mg, Mn, Na, Sm and Zn in PM2.5 samples.


Assuntos
Poluentes Ocupacionais do Ar/análise , Indústria Química , Monitoramento Ambiental/estatística & dados numéricos , Fertilizantes/análise , Exposição por Inalação/análise , Compostos Orgânicos/análise , Monitoramento Ambiental/métodos , Cabelo/química , Humanos , Unhas/química , Análise de Ativação de Nêutrons , Tamanho da Partícula , Polônia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...