Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; : e16287, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366679

RESUMO

PREMISE: Whole-genome duplication (neopolyploidy) can instantly differentiate the phenotype of neopolyploids from their diploid progenitors. These phenotypic shifts in organs such as roots and leaves could also differentiate the way neopolyploids interact with microbial species. While some studies have addressed how specific microbial interactions are affected by neopolyploidy, we lack an understanding of how genome duplication affects the diversity and composition of microbial communities. METHODS: We performed a common garden experiment with multiple clones of artificially synthesized autotetraploids and their ancestral diploids, derived from 13 genotypes of wild strawberry, Fragaria vesca. We sequenced epiphytic bacteria and fungi from roots and leaves and characterized microbial communities and leaf functional traits. RESULTS: Autotetraploidy had no effect on bacterial alpha diversity of either organ, but it did have a genotype-dependent effect on the diversity of fungi on leaves. In contrast, autotetraploidy restructured the community composition of leaf bacteria and had a genotype-dependent effect on fungal community composition in both organs. The most differentially abundant bacterial taxon on leaves belonged to the Sphingomonas, while a member of the Trichoderma was the most differentially abundant fungal taxon on roots. Ploidy-induced change in leaf size was strongly correlated with a change in bacterial but not fungal leaf communities. CONCLUSIONS: Genome duplication can immediately alter aspects of the plant microbiome, but this effect varies by host genotype and bacterial and fungal community. Expanding these studies to wild settings where plants are exposed continuously to microbes are needed to confirm the patterns observed here.

2.
Curr Opin Insect Sci ; 44: 48-54, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33248285

RESUMO

Microbes (fungi, bacteria and viruses) living within flowers are hypothesized to affect pollination. We evaluate current support for this idea at each stage of the pollination process. Evidence to date is convincing that microbes influence pollinator attraction, but data are heavily weighted toward bumblebees and the effects of nectar yeasts. Effects of microbes on the efficacy of pollinator visits is understudied and variable outcomes from field studies suggest quality of pollinator visits, not only quantity, are likely involved. The effect of microbes on pollen performance is underappreciated. Beyond the effect of pathogenic viruses, the impacts of pollen-transmitted endophytic microbes on pollen viability or tube growth are unknown but could affect the outcome of pollen receipt. Future research integrating microbes into pollination should broaden taxonomic diversity of microbes, pollinators and plants and the processes under study.


Assuntos
Comportamento Animal , Flores/microbiologia , Polinização , Animais , Endófitos/fisiologia , Interações Hospedeiro-Patógeno , Pólen/fisiologia
3.
New Phytol ; 216(2): 419-428, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28225170

RESUMO

The Selaginella rhizophore is a unique and enigmatic organ whose homology with roots, shoots, or neither of the two remains unresolved. Nevertheless, rhizophore-like organs have been documented in several fossil lycophytes. Here we test the homology of these organs through comparisons with the architecture of rhizophore vascularization in Selaginella. We document rhizophore vascularization in nine Selaginella species using cleared whole-mounts and histological sectioning combined with three-dimensional reconstruction. Three patterns of rhizophore vascularization are present in Selaginella and each is comparable to those observed in rhizophore-like organs of fossil lycophytes. More compellingly, we found that all Selaginella species sampled exhibit tracheids that arc backward from the stem and side branch into the rhizophore base. This tracheid curvature is consistent with acropetal auxin transport previously documented in the rhizophore and is indicative of the redirection of basipetal auxin from the shoot into the rhizophore during development. The tracheid curvature observed in Selaginella rhizophores provides an anatomical fingerprint for the patterns of auxin flow that underpin rhizophore development. Similar tracheid geometry may be present and should be searched for in fossils to address rhizophore homology and the conservation of auxin-related developmental mechanisms from early stages of lycophyte evolution.


Assuntos
Fósseis , Ácidos Indolacéticos/metabolismo , Feixe Vascular de Plantas/anatomia & histologia , Selaginellaceae/anatomia & histologia , Selaginellaceae/metabolismo , Transporte Biológico , Imageamento Tridimensional , Modelos Biológicos , Brotos de Planta/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...