Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 975883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312921

RESUMO

Microorganisms proteotyping by tandem mass spectrometry has been recently shown as a powerful methodology to identify the wide-range taxonomy and biomass of microbiota. Sputum is the recommended specimen for routine microbiological monitoring of Cystic Fibrosis (CF) patients but has been rarely submitted to tandem mass spectrometry-based proteotyping. In this study, we compared the microbial components of spontaneous and induced sputum samples from three cystic fibrosis patients. Although the presence of microbial proteins is much lower than host proteins, we report that the microbiota's components present in the samples can be identified, as well as host biomarkers and functional insights into the microbiota. No significant difference was found in microorganism abundance between paired spontaneous and induced sputum samples. Microbial proteins linked to resistance, iron uptake, and biofilm-forming ability were observed in sputa independently of the sampling method. This unbiased and enlarged view of the CF microbiome could be highly complementary to culture and relevant for the clinical management of CF patients by improving knowledge about the host-pathogen dynamics and CF pathophysiology.

2.
Environ Microbiol ; 24(9): 4299-4316, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506300

RESUMO

Since the beginning of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the gastrointestinal (GI) tract has emerged as an important organ influencing the propensity to and potentially the severity of the related COVID-19 disease. However, the contribution of the SARS-CoV-2 intestinal infection on COVID-19 pathogenesis remains to be clarified. In this exploratory study, we highlighted a possible link between alterations in the composition of the gut microbiota and the levels of SARS-CoV-2 RNA in the gastrointestinal tract, which could be more important than the presence of SARS-CoV-2 in the respiratory tract, COVID-19 severity and GI symptoms. As established by metaproteomics, altered molecular functions in the microbiota profiles of high SARS-CoV-2 RNA level faeces highlight mechanisms such as inflammation-induced enterocyte damage, increased intestinal permeability and activation of immune response that may contribute to vicious cycles. Uncovering the role of this gut microbiota dysbiosis could drive the investigation of alternative therapeutic strategies to favour the clearance of the virus and potentially mitigate the effect of the SARS-CoV-2 infection.


Assuntos
COVID-19 , Microbiota , Disbiose , Fezes , Humanos , Microbiota/genética , RNA Viral/genética , SARS-CoV-2/genética
3.
Microbiome ; 9(1): 195, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587999

RESUMO

BACKGROUND: Soil and sediment microorganisms are highly phylogenetically diverse but are currently largely under-represented in public molecular databases. Their functional characterization by means of metaproteomics is usually performed using metagenomic sequences acquired for the same sample. However, such hugely diverse metagenomic datasets are difficult to assemble; in parallel, theoretical proteomes from isolates available in generic databases are of high quality. Both these factors advocate for the use of theoretical proteomes in metaproteomics interpretation pipelines. Here, we examined a number of database construction strategies with a view to increasing the outputs of metaproteomics studies performed on soil samples. RESULTS: The number of peptide-spectrum matches was found to be of comparable magnitude when using public or sample-specific metagenomics-derived databases. However, numbers were significantly increased when a combination of both types of information was used in a two-step cascaded search. Our data also indicate that the functional annotation of the metaproteomics dataset can be maximized by using a combination of both types of databases. CONCLUSIONS: A two-step strategy combining sample-specific metagenome database and public databases such as the non-redundant NCBI database and a massive soil gene catalog allows maximizing the metaproteomic interpretation both in terms of ratio of assigned spectra and retrieval of function-derived information. Video abstract.


Assuntos
Proteômica , Solo , Metagenômica , Proteoma , Espectrometria de Massas em Tandem
4.
Microorganisms ; 8(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020444

RESUMO

The microbial diversity encompassed by the environmental biosphere is largely unexplored, although it represents an extensive source of new knowledge and potentially of novel enzymatic catalysts for biotechnological applications. To determine the taxonomy of microorganisms, proteotyping by tandem mass spectrometry has proved its efficiency. Its latest extension, phylopeptidomics, adds a biomass quantitation perspective for mixtures of microorganisms. Here, we present an application of phylopeptidomics to rapidly and sensitively screen microorganisms sampled from an industrial environment, i.e., a pool where radioactive material is stored. The power of this methodology is demonstrated through the identification of both prokaryotes and eukaryotes, whether as pure isolates or present as mixtures or consortia. In this study, we established accurate taxonomical identification of environmental prokaryotes belonging to the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla, as well as eukaryotes from the Ascomycota phylum. The results presented illustrate the potential of tandem mass spectrometry proteotyping, in particular phylopeptidomics, to screen for and rapidly identify microorganisms.

5.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32619390

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Assuntos
Antígenos Virais/biossíntese , Betacoronavirus/imunologia , Proteômica/métodos , Vacinas Virais/imunologia , Vírion/imunologia , Animais , Antígenos Virais/imunologia , Chlorocebus aethiops , SARS-CoV-2 , Espectrometria de Massas em Tandem , Células Vero
6.
NPJ Biofilms Microbiomes ; 6(1): 23, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504001

RESUMO

Metaproteomics of gut microbiomes from animal hosts lacking a reference genome is challenging. Here we describe a strategy combining high-resolution metaproteomics and host RNA sequencing (RNA-seq) with generalist database searching to survey the digestive tract of Gammarus fossarum, a small crustacean used as a sentinel species in ecotoxicology. This approach provides a deep insight into the full range of biomasses and metabolic activities of the holobiont components, and differentiates between the intestine and hepatopancreatic caecum.


Assuntos
Anfípodes/microbiologia , Bactérias/classificação , Proteogenômica/métodos , Proteômica/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Código de Barras de DNA Taxonômico , Microbioma Gastrointestinal , Filogenia , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
7.
Microbiome ; 8(1): 30, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143687

RESUMO

BACKGROUND: There is an important need for the development of fast and robust methods to quantify the diversity and temporal dynamics of microbial communities in complex environmental samples. Because tandem mass spectrometry allows rapid inspection of protein content, metaproteomics is increasingly used for the phenotypic analysis of microbiota across many fields, including biotechnology, environmental ecology, and medicine. RESULTS: Here, we present a new method for identifying the biomass contribution of any given organism based on a signature describing the number of peptide sequences shared with all other organisms, calculated by mathematical modeling and phylogenetic relationships. This so-called "phylopeptidomics" principle allows for the calculation of the relative ratios of peptide-specified taxa by the linear combination of such signatures applied to an experimental metaproteomic dataset. We illustrate its efficiency using artificial mixtures of two closely related pathogens of clinical interest, and with more complex microbiota models. CONCLUSIONS: This approach paves the way to a new vision of taxonomic changes and accurate label-free quantitative metaproteomics for fine-tuned functional characterization. Video abstract.


Assuntos
Proteínas de Bactérias/análise , Microbiota , Modelos Teóricos , Peptídeos/genética , Filogenia , Proteômica/métodos , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Biomassa , Bases de Dados de Proteínas , Proteoma , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...